The US National Toxicology Program (NTP) conducted a long-term carcinogenic and toxicity study with small animals on the effects of mobile phone radiation at 900 MHz and 1900 MHz, respectively, and showed an increase in incidence of malignant schwannomas in the heart of male rats at very higher exposure levels. To verify and clarify the NTP study results, Japan and Korea are conducting a joint study using the same reverberation chamber type exposure system as in the NTP study. The purpose of this paper is to derive a quantitative relationship between the electric field strength in the reverberation chamber and the exposure level, i.e., the mean whole-body averaged specific absorption rate (WBA _ SAR) of rats based on a large-scale finite difference time domain (FDTD) simulation. First, two FDTD simulation methods, one with a single plane wave incidence and the other with simultaneous plane wave incidence, were compared, and then the former method was adopted for convenience and saving calculation time. The derived quantitative relationship between the WBA _ SAR and the electric field strength required to achieve the WBA _ SAR consists of a one-dimensional approximation model which considers only the body mass of rats and a twodimensional approximation model which considers not only the body mass but also the number of rats. The two approximation models cover the entire two-year exposure period, and the exposure level in the two-year long-term exposure experiment is being well controlled. Moreover, unlike dosimetry in the NTP study, an uncertainty analysis of numerical dosimetry was performed in more details, and the combined standard uncertainty in the WBA _ SAR was found to be 16.1%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.