We aimed to assess the combined diagnostic value of apparent diffusion coefficient (ADC) and tumor blood flow (TBF) obtained by pseudocontinuous arterial spin labeling (pCASL) for differentiating malignant tumors (MTs) in salivary glands from pleomorphic adenomas (PAs) and Warthin’s tumors (WTs). We used pCASL imaging and ADC map to evaluate 65 patients, including 16 with MT, 30 with PA, and 19 with WT. We evaluated all tumors by histogram analyses and compared various characteristics by one-way analysis of variance followed by Tukey post-hoc tests. Diagnostic performance was evaluated by receiver operating characteristic (ROC) curve analysis. There were significant differences in the mean, 50th, 75th, and 90th percentiles of TBF among the tumor types, in the mean TBFs (mL/100 g/min) between MTs (57.47 ± 35.14) and PAs (29.88 ± 22.53, p = 0.039) and between MTs and WTs (119.31 ± 50.11, p < 0.001), as well as in the mean ADCs (× 10−3 mm2/s) between MTs (1.08 ± 0.28) and PAs (1.60 ± 0.34, p < 0.001), but not in the mean ADCs between MTs and WTs (0.87 ± 0.23, p = 0.117). In the ROC curve analysis, the highest areas under the curves (AUCs) were achieved by the 10th and 25th percentiles of ADC (AUC = 0.885) for differentiating MTs from PAs and the 50th percentile of TBF (AUC = 0.855) for differentiating MTs from WTs. The AUCs of TBF, ADC, and combination of TBF and ADC were 0.850, 0.885, and 0.950 for MTs and PAs differentiation and 0.855, 0.814, and 0.905 for MTs and WTs differentiation, respectively. The combination of TBF and ADC evaluated by histogram analysis may help differentiate salivary gland MTs from PAs and WTs.
Background and purpose Cortical microinfarcts (CMIs) are frequently found in the brains of patients with advanced cerebral amyloid angiopathy (CAA) at autopsy. The small vessel disease (SVD) score for CAA (i.e., the CAA‐SVD score) has been proposed to evaluate the severity of CAA‐associated vasculopathic changes by a combination of magnetic resonance imaging (MRI) markers. The aim of this study was to examine the association between total CAA‐SVD score and features of CMIs on in vivo 3‐Tesla MRI. Methods Eighty patients with probable CAA were retrospectively analyzed. Lobar cerebral microbleeds, cortical superficial siderosis, enlargement of perivascular space in the centrum semiovale and white matter hyperintensity were collectively assessed, and the total CAA‐SVD score was calculated. The presence of CMI was also examined. Results Of the 80 patients, 13 (16.25%) had CMIs. CMIs were detected more frequently in the parietal and occipital lobes. A positive correlation was found between total CAA‐SVD score and prevalence of CMI (ρ = 0.943; p = 0.005). Total CAA‐SVD score was significantly higher in patients with CMIs than in those without (p = 0.009). In a multivariable logistic regression analysis, the presence of CMIs was significantly associated with total CAA‐SVD score (odds ratio 2.318 [95% confidence interval 1.228–4.376]; p = 0.01, per each additional point). Conclusions The presence of CMIs with a high CAA‐SVD score could be an indicator of more severe amyloid‐associated vasculopathic changes in patients with probable CAA.
BackgroundThe prevalence of cerebral microbleeds (CMBs) is significantly higher in patients with atrial fibrillation (AF) than in those without AF. CMBs in patients with AF have been reported to be primarily of the lobar type, but the exact cause of this remains unknown. We investigated the possibility that hemorrhagic transformation of embolic microinfarction can account for de novo lobar CMBs.MethodsA total of 101 patients who underwent ablation therapy for AF were prospectively registered, and 72 patients completed the assessment with MRI 6 months after catheter ablation. Brain MRI, including diffusion-weighted imaging (DWI) and susceptibility-weighted imaging (SWI), were examined at 1–3 days (baseline) and 6 months after catheter ablation. We quantitatively evaluated the spatial and temporal distribution of embolic microinfarctions and de novo CMBs.ResultsOf the 101 patients, 68 were enrolled in this study. Fifty-nine patients (86.8%) showed embolic microinfarctions on baseline DWI immediately after catheter ablation. There were 137 CMBs in SWI, and 96 CMBs were of the lobar type. Six months later, there were 208 CMBs, including 71 de novo CMBs, and 60 of 71 (84.5%) were of the lobar type. Of the 71 de novo CMBs, 56 (78.9%) corresponded to the location of previous embolic microinfarctions found on baseline DWI. The platelet count was significantly lower and hematocrit/hemoglobin and Fazekas score were higher in the group with de novo CMBs than in the group without de novo CMBs.ConclusionDe novo CMBs frequently appeared after catheter ablation therapy. Our results suggest that embolic microinfarction can cause lobar CMBs.
Hemangioblastomas of the cerebellopontine angle (CPA) that emerge extra-axially from the peripheral nervous system are extremely rare. We report a case of hemangioblastoma of the CPA evaluated by pseudocontinuous arterial spin labeling (pCASL). The high rate of tumor blood flow determined using pCASL provided additional useful information for the differential diagnosis of the CPA tumors in this patient.
Ipilimumab, a human monoclonal antibody against cytotoxic T-lymphocyte antigen 4, was approved by the U.S. FDA (Food and Drug Administration) in 2011 for the treatment of unresectable or metastatic malignant melanoma. Occurrence of hypophysitis, an immune-related adverse event due to ipilimumab use, has been frequently reported. We report a case of ipilimumab-induced hypophysitis involving the optic tracts and tuber cinereum, identified using 3D fluid-attenuated inversion recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.