Perpendicularly magnetized layers are used widely for high-density information storage in magnetic hard disk drives and nonvolatile magnetic random access memories. Writing and erasing of information in these devices is implemented by magnetization switching in local magnetic fields or via intense pulses of electric current. Improvements in energy efficiency could be obtained when the reorientation of perpendicular magnetization is controlled by an electric field. Here, we report on reversible electric-field-driven out-of-plane to in-plane magnetization switching in Cu/Ni multilayers on ferroelectric BaTiO 3 at room temperature. Fully deterministic magnetic switching in this hybrid material system is based on efficient strain transfer from ferroelastic domains in BaTiO 3 and the high sensitivity of perpendicular magnetic anisotropy in Cu/Ni to electric-field-induced strain modulations. We also demonstrate that the magnetoelectric coupling effect can be used to realize 180°magnetization reversal if the out-of-plane symmetry of magnetic anisotropy is temporarily broken by a small magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.