Krüpple-like factors (Klfs) are highly conserved zinc-finger transcription factors that regulate various developmental processes, such as haematopoiesis and cardiovascular development. In zebrafish, transient knockdown analysis of biklf/klf17 using antisense morpholino suggests the involvement of biklf/klf17 in primitive erythropoiesis and hatching gland development; however, the continuous physiological importance of klf17 remains uncharacterized under the genetic ablation of the klf17 gene among vertebrates. We established the klf17-disrupted zebrafish lines using the CRISPR/Cas9 technology and performed phenotypic analysis throughout early embryogenesis. We found that the klf17-deficient embryos exhibited abnormal lateral line neuromast deposition, whereas the production of primitive erythrocytes and haemoglobin production were observed in the klf17-deficient embryos. The expression of lateral line neuromast genes, klf17 and s100t, in the klf17-deficient embryos was detected in posterior lateral line neuromasts abnormally positioned at short intervals. Furthermore, the klf17-deficient embryos failed to hatch and died without hatching around 15 days post-fertilization (dpf), whereas the dechorionated klf17-deficient embryos and wild-type embryos were alive at 15 dpf. The klf17-deficient embryos abolished hatching gland cells and Ctsl1b protein expression, and eliminated the expression of polster and hatching gland marker genes, he1.1, ctsl1b and cd63. Thus, the klf17 gene plays important roles in posterior lateral line neuromast and hatching gland development.
DEAD-box helicase 5 (Ddx5) functions as an ATP-dependent RNA helicase and as a transcriptional coactivator for several transcription factors; however, the developmental function of the ddx5 gene in vertebrates is not fully understood. We found that the zebrafish ddx5 gene was expressed in developing gonads. Using the genome editing technology transcription activator-like effector nuclease, we established a ddx5-disrupted zebrafish and examined the morphological phenotypes of the mutant. We found that the majority of ddx5-deficient mutants developed as fertile males with normal testes and a small number of ddx5-deficient mutants developed as infertile females with small ovaries. Apoptotic cell death at 31 days post fertilization was increased in thick immature gonads (presumptive developing ovaries) of the ddx5-deficient mutant compared to those of heterozygous wild-type fish, while the number of apoptotic cells in thin immature gonads (presumptive developing testes) was comparable between the mutant and wild-type animals. Histological analysis revealed that ovaries of adult ddx5-deficient females had fewer vitellogenic oocytes and a larger number of stage I and II oocytes. The amount of cyclic adenosine monophosphate in the ddx5-deficient ovaries was high compared to that of wild-type ovaries, presumably leading to the mitotic arrest of oocyte maturation. Therefore, the ddx5 gene is dispensable for testis development, but it is essential for female sex differentiation and oocyte maturation in zebrafish.
Mammalian CEP55 (centrosomal protein 55 kDa) is a coiled‐coil protein localized to the centrosome in interphase cells and is required for cytokinesis. A homozygous non‐sense mutation in human CEP55 has been recently identified in perinatal lethal MARCH (multinucleated neurons, anhydramnios, renal dysplasia, cerebellar hypoplasia and hydranencephaly) syndrome. We have isolated zebrafish cep55 mutants defective in head morphology. The zebrafish cep55 gene was expressed in the head including the retina and the pectoral fin at 1 day post‐fertilization (dpf), and extensive cell death was widely observed in the head and tail of the cep55 mutant. In the cep55 mutant, the anterior–posterior distance of the ventral pharyngeal arches was short, and retinal lamination was disorganized. Neural cells, such as islet1‐positive cells and pax2‐positive cells, and fli1b‐positive vascular cells were reduced in the head of the cep55 mutant. Thus, we propose that the zebrafish cep55 mutant is a model organism for human MARCH syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.