The hypersensitive response (HR) is a common feature of plant immune responses and a type of programmed cell death. However, little is known about the induction mechanism of HR cell death. We report that overexpression of OsNAC4, which encodes a plant-specific transcription factor, leads to HR cell death accompanied by the loss of plasma membrane integrity, nuclear DNA fragmentation and typical morphological changes. In OsNAC4 knock-down lines, HR cell death is markedly decreased in response to avirulent bacterial strains. After induction by an avirulent pathogen recognition signal, OsNAC4 is translocated into the nucleus in a phosphorylation-dependent manner. A microarray analysis showed that the expression of 139 genes including OsHSP90 and IREN, encoding a Ca 2 þ -dependent nuclease, were different between the OsNAC4 knock-down line and control line during HR cell death. During the induction of HR cell death, OsHSP90 is involved in the loss of plasma membrane integrity, whereas IREN causes nuclear DNA fragmentation. Overall, our results indicate that two important events occurring during HR cell death are regulated by independent pathways.
Plants have sensitive perception systems that recognize various pathogen-derived molecules. We previously reported that rice detects flagellin from a rice-incompatible strain of gram-negative phytopathogenic bacterium, Acidovorax avenae, which induces subsequent immune responses involving cell death. The mechanism of flagellin perception in rice, however, has remained obscure. In this study, we found that flg22, a peptide derived from the flagellin N-terminus, induced weak immune responses without cell death in cultured rice cells. To elucidate the mechanism by which flg22 induced signaling in rice, we characterized OsFLS2, the rice ortholog of AtFLS2, which mediates flg22 perception. Heterologous expression of OsFLS2 functions in Arabidopsis, showing the conservation of the flg22 signaling pathway across divergent plant taxa. OsFLS2-overexpressing rice cultured cells generated stronger immune responses with the induction of cell death following stimulation with flg22 and flagellin. However, examination of the growth rate of the compatible strain in inoculated OsFLS2-overexpressing rice could not confirm bacterial growth suppression compared with wild-type rice. These results suggest that rice possesses a conserved flagellin perception system utilizing the FLS2 receptor which, when upregulated, hardly affects resistance against compatible A. avenae.
SummaryEL5, a rice gene responsive to N-acetylchitooligosaccharide elicitor, encodes a RING-H2 ®nger protein with structural features common to the plant-speci®c ATL family. We show that the fusion protein of EL5 with maltose binding protein (MBP) was polyubiquitinated by incubation with ubiquitin, ubiquitinactivating enzyme (E1), and the Ubc4/5 subfamily of the ubiquitin-conjugating enzyme (E2). EL5 possesses the activity to catalyse the transfer of ubiquitin to the MBP moiety, and the RING-H2 ®nger motif of EL5 is necessary for this activity. Thus, we concluded that EL5 represents a ubiquitin ligase (E3). We also show that two rice E2s (OsUBC5a, OsUBC5b) of the Ubc4/5 subfamily function as E2 which catalyses EL5-mediated ubiquitination, and OsUBC5b was induced by elicitor, as well as EL5. These results strongly suggest that EL5 and OsUBC5b have roles in plant defense response through the turnover of protein(s) via the ubiquitin/proteasome system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.