The role of metabolic diseases in ischemic stroke has become a primary concern in both research and clinical practice. Increasing evidence suggests that dysbiosis is associated with metabolic diseases. The aim of this study was to investigate whether the gut microbiota, as well as concentrations of organic acids, the major products of dietary fiber fermentation by the gut microbiota, are altered in patients with ischemic stroke, and to examine the association between these changes and host metabolism and inflammation. We analyzed the composition of the fecal gut microbiota and the concentrations of fecal organic acids in 41 ischemic stroke patients and 40 control subjects via 16S and 23S rRNA-targeted quantitative reverse transcription (qRT)-PCR and high-performance liquid chromatography analyses, respectively. Multivariable linear regression analysis was subsequently performed to evaluate the relationships between ischemic stroke and bacterial counts and organic acid concentrations. Correlations between bioclinical markers and bacterial counts and organic acids concentrations were also evaluated. Although only the bacterial counts of Lactobacillus ruminis were significantly higher in stroke patients compared to controls, multivariable analysis showed that ischemic stroke was independently associated with increased bacterial counts of Atopobium cluster and Lactobacillus ruminis, and decreased numbers of Lactobacillus sakei subgroup, independent of age, hypertension, and type 2 diabetes. Changes in the prevalence of Lactobacillus ruminis were positively correlated with serum interleukin-6 levels. In addition, ischemic stroke was associated with decreased and increased concentrations of acetic acid and valeric acid, respectively. Meanwhile, changes in acetic acid concentrations were negatively correlated with the levels of glycated hemoglobin and low-density lipoprotein cholesterol, whereas changes in valeric acid concentrations were positively correlated with the level of high sensitivity C-reactive protein and with white blood cell counts. Together, our findings suggest that gut dysbiosis in patients with ischemic stroke is associated with host metabolism and inflammation.
Background and Purpose-Oxidative stress contributes to ischemia/reperfusion neuronal damage in a consecutive 2-phase pattern: an immediate direct cytotoxic effect and subsequent redox-mediated inflammatory insult. The present study was designed to assess the neuroprotective mechanisms of edaravone, a novel free radical scavenger, through antioxidative and anti-inflammatory pathways, from the early period to up to 7 days after ischemia/reperfusion in mice. Methods-Mice were subjected to 60-minute ischemia followed by reperfusion. They were divided into the edaravone group (nϭ72; with different schedules for first administration) and the vehicle (control) group (nϭ36). Infarct volume and neurological deficit scores were evaluated at several time points after ischemia. Immunohistochemical analysis for 4-hydroxy-2-nonenal (HNE), 8-hydroxy-deoxyguanosine (8-OHdG), ionized calcium-binding adapter molecule 1 (Iba-1), inducible NO synthase (iNOS), and nitrotyrosine were performed at 24 hours, 72 hours, or 7 days after reperfusion. Result-Edaravone, even when administrated 6 hours after onset of ischemia/reperfusion, significantly reduced the infarct volume (68.10Ϯ6.24%; PϽ0.05) and improved the neurological deficit scores (PϽ0.05) at 24 hours after reperfusion. Edaravone markedly suppressed the accumulation of HNE-modified protein and 8-OHdG at the penumbra area during the early period after reperfusion (PϽ0.05) and reduced microglial activation, iNOS expression, and nitrotyrosine formation at the late period. Conclusion-Our results indicated that edaravone exerts an early neuroprotective effect through the early free radicals scavenging pathway and a late anti-inflammatory effect and suggested that edaravone is important for expansion of the therapeutic time window in stroke patients. (Stroke. 2005;36:2220-2225.)
Cerebral ischemia induces the expression of several growth factors and cytokines, which protect neurons against ischemic insults. Recent studies showed that granulocyte colony-stimulating factor (G-CSF) has a neuroprotective effect through the signaling pathway for the antiapoptotic cascade. The current study was designed to assess the neuroprotective mechanisms of G-CSF in ischemia/ reperfusion injury using bone marrow chimera mice known to express enhanced green fluorescent protein (EGFP). Mice were subjected to ischemia/reperfusion and divided into two groups: those treated with G-CSF (G-CSF group) and vehicle (control group) (n ¼ 35 in each group). Immunohistochemistry and immunoblotting for antiapoptotic protein, nitrotyrosine, and inducible nitrate oxide synthase (iNOS) were performed. G-CSF significantly reduced stroke volume (34%, Po0.006). G-CSF upregulated Stat3, pStat3, and Bcl-2 (Po0.05), and suppressed iNOS and nitrotyrosine expression. In EGFP chimera mice, G-CSF decreased the migration of Iba-1/EGFP-positive bone marrow-derived monocytes/macrophages and increased intrinsic microglia/macrophages at ischemic penumbra (Po0.05), suggesting that bone marrow-derived monocytes/macrophages are not involved in G-CSF-induced reduction of ischemic injury size. Our study indicated that G-CSF exerts a neuroprotective effect through the direct activation of antiapoptotic pathway, and suggested that G-CSF is important for expansion of the therapeutic time window in patients with cerebral ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.