We present the principle of a terahertz-wave radar and its proof-of-concept experimental verification. The radar is based on a 522 GHz resonant-tunneling-diode oscillator, whose terahertz output power can be easily modulated by superimposing the modulation signal on its bias voltage. By using one modulation frequency and measuring the time delay of the returning signal, a relative measurement of the propagation distance is possible; adding a second modulation frequency removes the ambiguity stemming from the periodicity of the modulation sine wave and allows an absolute distance measurement. We verified this measurement method experimentally and obtained a submillimeter precision, as predicted by theory.
We present the principle and the experimental verification of a distance measurement method based on the propagation of terahertz waves. The method relies on modulating the amplitude of a resonant-tunneling-diode (RTD) oscillator used as terahertz-wave source and on measuring the phase of the detected wave by applying a quadrature mixing technique. The distance measurement is found to have a residual error as small as 0.063 mm (standard deviation), which is a record for an RTD-based terahertz-wave radar system. This is almost five times better than our previous record of 0.29 mm, when an oscilloscope was used for phase measurements; additionally, the quadrature mixing brings about numerous practical benefits, such as greatly reduced cost, size, weight, complexity, and power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.