We isolated and characterized temperature-sensitive mutants for two genes, dnaE and polC, that are essential for DNA replication in Staphylococcus aureus. DNA replication in these mutants had a slow-stop phenotype when the temperature was shifted to a non-permissive level. The dnaE gene encodes a homolog of the alpha-subunit of the DNA polymerase III holoenzyme, the replicase essential for chromosomal DNA replication in Escherichia coli. The polC gene encodes PolC, another catalytic subunit of DNA polymerase, which is specifically found in gram-positive bacteria. The wild-type dnaE or polC gene complemented the temperature-sensitive phenotypes of cell growth and DNA replication in the corresponding mutant. Single mutations resulting in amino-acid exchanges were identified in the dnaE and polC genes of the temperature-sensitive mutants. The results indicate that these genes encode two distinct DNA polymerases which are both essential for chromosomal DNA replication in S. aureus. The number of viable mutant cells decreased at non-permissive temperature, suggesting that inactivation of DnaE and PolC has a bactericidal effect and that these enzymes are potential targets of antibiotics.
The photovoltaic (PV) effect in polar materials offers great potential for light-energy conversion that generates a voltage beyond the bandgap limit of present semiconductor-based solar cells. Ferroelectrics have received renewed attention because of the ability to deliver a high voltage in the presence of ferroelastic domain walls (DWs). In recent years, there has been considerable debate over the impact of the DWs on the PV effects, owing to lack of information on the bulk PV tensor of host ferroelectrics. In this article, we provide the first direct evidence of an unusually large PV response induced by ferroelastic DWs—termed ‘DW’-PV effect. The precise estimation of the bulk PV tensor in single crystals of barium titanate enables us to quantify the giant PV effect driven by 90° DWs. We show that the DW-PV effect arises from an effective electric field consisting of a potential step and a local PV component in the 90° DW region. This work offers a starting point for further investigation into the DW-PV effect of alternative systems and opens a reliable route for enhancing the PV properties in ferroelectrics based on the engineering of domain structures in either bulk or thin-film form.
In the present work, scanning tunneling microscopy/spectroscopy ͑STM/STS͒ measurements were carried out on underdoped Bi 2 Sr 2−x La x CuO 6+␦ and Bi 2 Sr 2 CaCu 2 O 8+␦ to clarify the origin of the pseudogap, in particular, the inhomogeneous large pseudogap. The nodal part of a d-wave pairing gap, which is under no influence of the inhomogeneous large pseudogap, was also examined by relating the homogeneous bottom part of the STS gap to a nodal d-wave gap in momentum space. We report that the inhomogeneous large pseudogap in the antinodal region links to a two-dimensional electronic charge order, and that the gap size of the nodal d-wave part ⌬ sc scales with the superconducting critical temperature T c in the pseudogap regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.