Metal halide perovskite light‐emitting diodes (LEDs) are promising for future display applications because of their excellent advantages, such as high external quantum efficiency, emission color tunability, and high emission color purity. Although solution processing widely used for perovskite film fabrication is an additional advantage, there are cases in which fabricating a perovskite‐emitting layer with spin‐coating results in the dissolution of an underlying organic hole transport layer (HTL). As a result, since a perovskite layer comes into partial contact with an indium tin oxide (ITO) anode layer, excited states formed in a perovskite‐emitting layer are quenched by charge transfer to ITO. In this study, it is shown that adding tetraethyl orthosilicate (TEOS) into a HTL material of poly(N‐vinylcarbazole) (PVCz) is an effective method used to overcome this issue. Upon heating, the hydrolysis reaction of TEOS molecules takes place in PVCz films to form a siloxane network, which makes PVCz films insoluble and, therefore, alleviates the excited‐state quenching. It is demonstrated that using the siloxane‐blended PVCz HTL increases external quantum efficiencies of perovskite LEDs to 15.4 ± 0.3% from the original 10.4 ± 0.3% by about 1.5 times.
Films of the quasi‐2D perovskite based on 1‐naphthylmethylamine (NMA) are promising as the gain medium for optically pumped lasing and future electrically pumped lasing because of its low lasing threshold and small electroluminescence efficiency rolloff. However, reasons for the low threshold and small efficiency rolloff are still unclear. Therefore, exciton dynamics are investigated in NMA‐based quasi‐2D perovskite films. It is found that quenching of bright excitons by other excitons or charge carriers is unlikely in NMA‐based quasi‐2D perovskite films, which is one reason for the low lasing threshold and small efficiency rolloff. Moreover, thermally stimulated current measurements reveal that the defect levels inside the band gap of the NMA‐based quasi‐2D perovskite are shallow, with a depth of ≈0.3 eV, causing a decrease in nonradiative exciton recombination through the defects. Therefore, population inversion can be easily achieved, leading to the low lasing threshold as well. For fabrication of NMA‐based quasi‐2D perovskite laser devices with even lower lasing thresholds, a circular‐shaped optical resonator, and small‐molecule‐based defect passivation are used. Optically pumped lasing can be obtained from these devices, with a threshold of ≈1 µJ cm−2, which is one of the lowest values ever reported in any perovskite lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.