Rubicon is overexpressed and plays a pathogenic role in NAFLD by accelerating hepatocellular lipoapoptosis and lipid accumulation, as well as inhibiting autophagy. Rubicon may be a novel therapeutic target for regulating NAFLD development and progression. (Hepatology 2016;64:1994-2014).
The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases Cdc42 and Rab8a are critical regulators of these processes in mice. Conditional ablation of Cdc42 in the mouse intestinal epithelium resulted in the formation of large intracellular vacuolar structures containing microvilli (microvillus inclusion bodies) in epithelial enterocytes, a phenotype reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells, and increased apoptosis. Cdc42 deficiency impaired Rab8a activation and its association with multiple effectors, and prevented trafficking of Rab8a vesicles to the midbody. This impeded cytokinesis, triggering crypt apoptosis and disrupting epithelial morphogenesis. Rab8a was also required for Cdc42-GTP activity in the intestinal epithelium, where continued cell division takes place. Furthermore, mice haploinsufficient for both Cdc42 and Rab8a in the intestine demonstrated abnormal crypt morphogenesis and epithelial transporter physiology, further supporting their functional interaction. These data suggest that defects of the stem cell niche can cause MVID. This hypothesis represents a conceptual departure from the conventional view of this disease, which has focused on the affected enterocytes, and suggests stem cell-based approaches could be beneficial to infants with this often lethal condition.
Compartmentalization of Toll-like receptors (TLRs) in intestinal epithelial cells (IECs) regulates distinct immune responses to microbes; however, the specific cellular machinery that controls this mechanism has not been fully identified. Here we provide genetic evidences that the recycling endosomal compartment in enterocytes maintains a homeostatic TLR9 intracellular distribution, supporting mucosal tolerance to normal microbiota. Genetic ablation of a recycling endosome resident small GTPase, Rab11a, a gene adjacent to a Crohn's disease risk locus, in mouse IECs and in Drosophila midgut caused epithelial cell-intrinsic cytokine production, inflammatory bowel phenotype, and early mortality. Unlike wild-type controls, germ-free Rab11a-deficient mouse intestines failed to tolerate the intraluminal stimulation of microbial agonists. Thus, Rab11a endosome controls intestinal host-microbial homeostasis at least partially via sorting TLRs.
BACKGROUND & AIMS: Although the tumor microenvironment plays an important role in tumor growth, it is not fully understood what role hepatic stellate cells (HSCs) play in the hepatocellular carcinoma (HCC) microenvironment. METHODS: A high-fat diet after streptozotocin was administered to HSC-specific Atg7-deficient (GFAP-Atg7 knockout [KO]) or growth differentiation factor 15 (GDF15)-deficient (GFAP-GDF15KO) mice. LX-2 cells, a human HSC cell line, were cultured with human hepatoma cells. RESULTS: In the steatohepatitis-based tumorigenesis model, GFAP-Atg7KO mice formed fewer and smaller liver tumors than their wild-type littermates. Mixed culture of LX-2 cells and hepatoma cells promoted LX-2 cell autophagy and hepatoma cell proliferation, which were attenuated by Atg7 KO in LX-2 cells. Hepatoma cell xenograft tumors grew rapidly in the presence of LX-2 cells, but Atg7 KO in LX-2 cells abolished this growth. RNA-sequencing revealed that LX-2 cells cultured with HepG2 cells highly expressed GDF15, which was abolished by Atg7 KO in LX-2 cells. GDF15 KO LX-2 cells did not show a growth-promoting effect on hepatoma cells either in vitro or in the xenograft model. GDF15 deficiency in HSCs reduced liver tumor size caused by the steatohepatitis-based tumorigenesis model. GDF15 was highly expressed and GDF15-positive nonparenchymal cells were more abundant in human HCC compared with noncancerous parts. Single-cell RNA sequencing showed that GDF15-positive rates in HSCs were higher in HCC than in background liver. Serum GDF15 levels were high in HCC patients and increased with tumor progression. CONCLUSIONS: In the HCC microenvironment, an increase of HSCs that produces GDF15 in an autophagy-dependent manner may be involved in tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.