Effect of surface flaw on ductile fracture behavior of non-aligned multiple flaws in plate is studied numerically using Gurson’s constitutive equation. Based on experiments, 2 parallel crack problems are simulated. In experiments and simulation crack coalescence, crack non coalescence and crack interaction was observed. In all cases, ductile fracture processes are obtained and results are compared with experimental ones. In this study, a new alignment rule for the prediction of maximum tensile load or rupture load for multiple cracked plates is compared with the simulation result.
Effect of surface flaw on ductile fracture behavior of non-aligned multiple flaws in plate is studied numerically using Gurson’s constitutive equation. Based on experiments, two parallel non-aligned crack problems are simulated. From experimental and simulation data, crack coalescence, interaction between two cracks and crack penetration was observed. In all cases, ductile fracture processes are obtained and results are compared with experimental ones. Fracture patterns agree well with experimental results. Close qualitative match was obtained by comparing each load displacement curves that are normalized by maximum load. It shows that the mechanism of ductile fracture process is properly captured. By selecting one normalized experimental data as a base setup, maximum load from related simulation results can be predicted. Aligned rules are checked based on these simulations, and H / a criteria verified it’s availability when average crack depth is used as crack depth.
Crack propagating evaluation is needed to predict and prevent structural damages since many structure defects from numerous crack propagating. It is widely known that ductile fracture occurs when external load is exerted to the material, these load include strong and unpredictable load such as earthquakes and collision of objects. Ductile material fractures via nucleation of void, growth of void and coalescence of voids. Many studies have been conducted; Kikuchi and Sannoumaru have published papers on the studies of ductile fracture. In the first paper [1], the thickness effect on the microscopic fracture process and fracture toughness is studied experimentally. In the second paper [2], dimple fracture tests were performed using three point bending specimens. In the test, loading condition is changed from mode I to mixed mode condition to study the effect of the mixed mode loading. Numerical simulation is conducted using Gurson’s constitutive equation. It is found that crack growth direction is affected significantly by the loading condition. Ductile fracture of a pipe used in Light Water Reactor components is researched in this paper. Four point bending of a pipe experiment had been done by the Central Research Institute of Electric Power Industry [3]. They were experimented in two conditions; one at room temperature (23 ) and second at high temperature (300 ). As a result, crack propagation behavior differs largely form each other. At room temperature, crack propagates parallel from the pre crack, and at high temperature, crack propagates in a slanting direction from the pre crack. Results show that that difference from the two temperature distinction of a tensile test in a stress strain curve is very little. In this paper, this problem is studied at first by experiments, observation of fracture surface and numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.