We study properties of the mean shift (MS)-type algorithms for estimating modes of probability density functions (PDFs), via regarding these algorithms as gradient ascent on estimated PDFs with adaptive step sizes. We rigorously prove convergence of mode estimate sequences generated by the MS-type algorithms, under the assumption that an analytic kernel function is used. Moreover, our analysis on the MS function finds several new properties of mode estimate sequences and corresponding density estimate sequences, including the result that in the MS-type algorithm using a Gaussian kernel the density estimate monotonically increases between two consecutive mode estimates. This implies that, in the one-dimensional case, the mode estimate sequence monotonically converges to the stationary point nearest to an initial point without jumping over any stationary point.
Modal linear regression (MLR) is a method for obtaining a conditional mode predictor as a linear model. We study kernel selection for MLR from two perspectives: "which kernel achieves smaller error?" and "which kernel is computationally efficient?". First, we show that a Biweight kernel is optimal in the sense of minimizing an asymptotic mean squared error of a resulting MLR parameter. This result is derived from our refined analysis of an asymptotic statistical behavior of MLR. Secondly, we provide a kernel class for which iteratively reweighted least-squares algorithm (IRLS) is guaranteed to converge, and especially prove that IRLS with an Epanechnikov kernel terminates in a finite number of iterations. Simulation studies empirically verified that using a Biweight kernel provides good estimation accuracy and that using an Epanechnikov kernel is computationally efficient. Our results improve MLR of which existing studies often stick to a Gaussian kernel and modal EM algorithm specialized for it, by providing guidelines of kernel selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.