(1) Background: Our published data have indicated that (1) auraptene (AUR), a citrus ingredient, has neuroprotective effects on the mouse brain, owing to its ability to suppress inflammation, such as causing a reduction in hyperactivation of microglia and astrocytes; (2) AUR has the ability to trigger phosphorylation (activation) of extracellular signal-related kinase (ERK) and cAMP response element-binding protein (CREB) in neuronal cells; (3) AUR has the ability to induce glial cell line-derived neurotrophic factor (GDNF) synthesis/secretion in rat C6 glioma cells. The well-established fact that the ERK-CREB pathway plays an important role in the production of neurotrophic factors, including GDNF and brain-derived neurotrophic factor (BDNF), prompted us to investigate whether AUR would also have the ability to induce BDNF expression in neuronal cells. (2) Methods: Mouse neuroblastoma neuro2a cells were cultured and the effects of AUR on BDNF mRNA expression and protein content were evaluated by RT-PCR and ELISA, respectively. (3) Results: The levels of BDNF mRNA and secreted BDNF were significantly increased by AUR in a dose- and time-dependent manner in neuro2a cells. (4) Conclusion: The induction of BDNF in neuronal cells might be, in part, one of the mechanisms accounting for the neuroprotective effects of AUR.
We previously demonstrated that auraptene (AUR), a natural coumarin derived from citrus plants, exerts anti-inflammatory effects in the brain, resulting in neuroprotection in some mouse models of brain disorders. The present study showed that treatment with AUR significantly increased the release of glial cell line-derived neurotrophic factor (GDNF), in a dose- and time-dependent manner, by rat C6 glioma cells, which release was associated with increased expression of GDNF mRNA. These results suggest that AUR acted as a neuroprotective agent in the brain via not only its anti-inflammatory action but also its induction of neurotrophic factor. We also showed that (1) the AUR-induced GDNF production was inhibited by U0126, a specific inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2, and by H89, a specific inhibitor of protein kinase A (PKA); and (2) AUR induced the phosphorylation of cAMP response element-binding protein (CREB), a transcription factor located within the nucleus. These results suggest that AUR-stimulated gdnf gene expression was up-regulated through the PKA/ERK/CREB pathway in C6 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.