The mass-resolved resonance enhanced two-photon ionization spectra of jet-cooled benzyl chloride were measured. Some low-frequency vibronic bands around the S1-S0 origin band were assigned to transitions of the internal rotational mode of the chloromethyl group. The internal rotational motion was analyzed by using the one-dimensional free rotor approximation. The conformation in the S1 state was found to be that in which the C-Cl bond lies in orthogonal to the benzene plane. For the species with m/e 126, the transition energy of the internal rotational bands corresponded well to the potential energy values of V2 = 1900 cm(-1) and V4 = 30 cm(-1) in the S1 state and the reduced rotational constant B values 0.50 and 0.47 cm(-1) in the S0 and S1 states, respectively. The B values obtained for the chlorine isotopomer (m/e 128) were slightly different. The S1 potential barrier height was found to be about 3 times larger than that for the S0 state. Molecular orbital calculations suggest that the difference between energies of the HOMO and LUMO with respect to the rotation of the chloromethyl group correspond approximately to the potential energy curve obtained for the S1 state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.