We report here the first example of organic radical battery with DNA. Though there is a growing interest in DNA/cationic-lipid complexes as promising gene delivery vehicles, few efforts have been focused on the use of such complexes as advanced materials for organic optoelectronic applications. The present article describes how substitution of the sodium counter cation of DNA with cationic amphiphilic lipid(1-4) provided novel DNA-lipid complexes that contain TEMPO radicals, in which the actual mole ratio of phosphate to lipid was 1:0.84 to 1:0.16. All the TEMPO-containing DNA-lipid complexes displayed reversible two-stage charge/discharge processes, the discharge capacities of which were 40.5-60.0 A h kg(-1). In particular, the capacity of a DNA-lipid(3)-based cell reached 60.0 A h kg(-1), which corresponds to 192 % relative to its theoretical value for the single-electron one-stage process, indicating a two-electron process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.