We report pulsed homodyne detection of squeezed pulses at a repetition rate of 76 MHz. Measurement of individual pulses, which were interrogated by the correlation coefficient between adjacent pulses, was realized. A homodyne detector was constructed using a low-noise, high-speed operational amplifier; it had a usable bandwidth of 250 MHz. We observed 2.3 dB of squeezing in both the time and frequency domains.
Spatially separated entanglement is demonstrated by interfering two high-repetition squeezed pulse trains. The entanglement correlation of the quadrature amplitudes between individual pulses is interrogated. It is characterized in terms of the sufficient inseparability criterion with an optimum result of in the frequency domain and in the time domain. The quantum correlation is also observed when the two measurement stations are separated by a physical distance of 4.5 m, which is sufficiently large to demonstrate the space-like separation, after accounting for the measurement time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.