Millimeter wave provides high data rates for Vehicle-to-Everything (V2X) communications. This paper motivates millimeter wave to support automated driving and begins by explaining V2X use cases that support automated driving with references to several standardization bodies. The paper gives a classification of existing V2X standards: IEEE802.11p and LTE V2X, along with the status of their commercial deployment. Then, the paper provides a detailed assessment on how millimeter wave V2X enables the use case of cooperative perception. The explanations provide detailed rate calculations for this use case and show that millimeter wave is the only technology able to achieve the requirements. Furthermore, specific challenges related to millimeter wave for V2X are described, including coverage enhancement and beam alignment. The paper concludes with some results from three studies, i.e. IEEE802.11ad (WiGig) based V2X, extension of 5G NR (New Radio) toward mmWave V2X, and prototypes of intelligent street with mmWave V2X.
The combination of onboard sensors on vehicles with wireless communication has great advantages over the conventional driving systems in terms of safety and reliability. This technique is often called cooperative perception. Cooperative perception is expected to compensate for blind spots in dynamic maps, which are caused by obstacles. Few blind spots in dynamic maps can improve the safety and reliability of driving thanks to the additional information beyond the sensing of the onboard sensors. In this paper, we analyzed the required sensor data rate to be exchanged for the cooperative perception in order to enable a new level of safe and reliable automated driving in overtaking scenario. The required sensor data rate was calculated by the combination of recognition and vehicle movement to adopt realistic assumptions. In the end of the paper, we compared the required sensor data rate with the outage data rate realized by the conventional V2V communication and millimeter-wave communication. The results showed the indispensability of millimeter-wave communications in automated driving systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.