Oligonucleotide-based DNA microarrays are becoming increasingly useful tools for the analysis of gene expression and single nucleotide polymorphisms (SNPs). Here, we present a method that permits the manufacture of microarrays from non-modified oligonucleotides on a poly carbodiimide-coated glass surface by UV-irradiation. The use of UV-irradiation facilitates an increase in the level of signal intensity, but it does not affect signal discrimination by the oligonucleotides immobilized on the surface. The signal intensity obtained for an array fabricated using non-modified oligonucleotides with UV-irradiation is approximately 7-fold greater than that without UV-irradiation. The detection of SNPs was tested to ascertain whether this technique could discriminate specific hybridization signals without causing significant UV-irradiation-induced damage to the immobilized oligonucleotides. We found that this immobilization method provides greater hybridization signals and a better match/mismatch ratio of SNPs than do the established aminosilane techniques. Application of this technology to manufacturing DNA microarrays for sequence analysis is discussed.
A microarray method for bacterial species identification based on cpn60 and 16S rDNA hybridization was developed. Specific cpn60 or 16S rDNA oligonucleotides from various Helicobacter or Campylobacter species were printed and immobilized onto a proprietary plastic solid support. Using universal primers, fragments derived from either cpn60 or 16S rDNA genes from single isolates or from a complex human waste sludge DNA sample spiked with Helicobacter pylori were biotinylated and hybridized to the plastic slide. Subsequent querying with a streptavidin-horseradish peroxidase conjugate followed by color development using tetramethylbenzidine resulted in accurate Helicobacter species identification with no cross-hybridization to either the 16S rDNA or the cpn60 sequence of a closely related strain of Campylobacter jejuni. The combination of a nonfluorescence visual detection system with a polymer-based DNA microarray slide has resulted in a molecular tool that should prove useful in numerous applications requiring rapid, low-cost bacterial species identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.