Oxidative stress is a strong contributor to the progression from simple fatty liver to nonalcoholic steatohepatitis (NASH). Molecular hydrogen is an effective antioxidant that reduces cytotoxic reactive oxygen species. In this study, we investigated the effects of hydrogen-rich water and the drug pioglitazone on the progression of NASH in mouse models. A methionine-choline-deficient (MCD) diet mouse model was prepared. Mice were divided into three experimental groups and fed for 8 weeks as follows: (1) MCD diet 1 control water (CW group); (2) MCD diet 1 hydrogen-rich water (HW group); and (3) MCD diet mixed with pioglitazone (PGZ group). Plasma alanine aminotransferase levels, hepatic expression of tumor necrosis factor-a, interleukin-6, fatty acid synthesis-related genes, oxidative stress biomarker 8-hydroxydeoxyguanosine (8-OHdG), and apoptosis marker terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nickend labeling (TUNEL)-positive cells in the liver were decreased in the HW and PGZ groups. The HW group showed a smaller decrease in hepatic cholesterol; however, stronger antioxidative effects in serum and lower peroxisome proliferator-activated receptor-a expression in the liver were seen in comparison with the PGZ group. We then investigated the effects of hydrogen in the prevention of hepatocarcinogenesis in STAM mice, known as the NASH-related hepatocarcinogenesis model. Eight-week-old male STAM mice were divided into three experimental groups as follows: (1) control water (CW-STAM); (2) hydrogen-rich water (HW-STAM); and (3) pioglitazone (PGZ-STAM). After 8 weeks, hepatic tumors were evaluated. The number of tumors was significantly lower in the HW-STAM and PGZ-STAM groups than in the CW-STAM group. The maximum tumor size was smaller in the HW-STAM group than in the other groups. Conclusion: Consumption of hydrogen-rich water may be an effective treatment for NASH by reducing hepatic oxidative stress, apoptosis, inflammation, and hepatocarcinogenesis. (HEPATOLOGY 2012;56:912-921)
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease characterized by lobular inflammation, hepatocellular ballooning, and fibrosis with an inherent risk for progression to cirrhosis and hepatocellular carcinoma (HCC). Mitochondrial dysfunction appears to play a role in the progression from simple steatosis to NASH. L-carnitine (L-b-hydroxy-g-N-trimethylaminobutyric acid), an essential nutrient that converts fat into energy in mitochondria, has been shown to ameliorate liver damage. The aim of the present study was to explore the preventive and therapeutic effect of L-carnitine in NASH model mice. Eight-week-old male STAM mice, a NASH-cirrhosis-hepatocarcinogenic model, were divided into 3 experimental groups and fed as follows: 1) high-fat diet (HFD) (control group); 2) HFD mixed with 0.28% L-carnitine (L-carnitine group); and 3) HFD mixed with 0.01% α-tocopherol (α-tocopherol group). After 4 or 8 weeks, mice were sacrificed. Blood samples and livers were collected, and hepatic tumors were counted and measured. Livers were subjected to histological study, immunohistochemical staining of 4-hydroxynonenal and ferritin, determination of 8-OHdG levels, mRNA and protein expressions for multiple genes, and metabolomic analysis. The intestinal microbiome was also analyzed. L-carnitine increased hepatic expression of genes related to long-chain fatty acid transport, mitochondrial β-oxidation, and antioxidant enzymes following suppression of hepatic oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine developed fewer liver tumors. Although α-tocopherol resulted in NASH improvement in the same manner as L-carnitine, it increased periodontitis-related microbiotic changes and hepatic iron transport-related gene expression and led to less effective for anti-hepatocarcinogenesis.ConclusionL-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model by upregulating the mitochondrial β-oxidation and redox system.
BackgroundThe blood pressure variability (BPV) such as visit-to-visit, day-by-day, and ambulatory BPV has been also shown to be a risk of future cardiovascular events. However, the effects of antihypertensive therapy on BPV remain unclear. The purpose of this study was to evaluate the effect of azilsartan after switching from another angiotensin II receptor blocker (ARB) on day-to-day BPV in home BP monitoring.MethodsThis prospective, multicenter, open-labeled, single-arm study included 28 patients undergoing treatment with an ARB, which was switched to azilsartan after enrollment. The primary outcome was the change in the mean of the standard deviation and the coefficient of variation of morning home BP for 5 consecutive days from baseline to the 24-week follow-up. The secondary outcome was the change in arterial stiffness measured by the cardio-ankle vascular index.ResultsThe mean BPs in the morning and evening for 5 days did not statistically differ between baseline and 24 weeks. For the morning BP, the means of the standard deviations and coefficient of variation of the systolic BP were significantly decreased from 7.4 ± 3.6 mm Hg to 6.1 ± 3.2 mm Hg and from 5.4±2.7% to 4.6±2.3% (mean ± standard deviation, P = 0.04 and P = 0.04, respectively). For the evening BP, no significant change was observed in the systolic or diastolic BPV. The cardio-ankle vascular index significantly decreased from 8.3 ± 0.8 to 8.1 ± 0.8 (P = 0.03).ConclusionsSwitching from another ARB to azilsartan reduced day-to-day BPV in the morning and improved arterial stiffness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.