The Drosophila transient receptor potential protein (TRP) and its mammalian homologues are thought to be Ca(2+)-permeable cation channels activated by G protein (G(q/11))-coupled receptors and are regarded as an interesting molecular model for the Ca(2+) entry mechanisms associated with stimulated phosphoinositide turnover and store depletion. However, there is little unequivocal evidence linking mammalian TRPs with particular native functions. In this study, we have found that heterologous expression of murine TRP6 in HEK293 cells reproduces almost exactly the essential biophysical and pharmacological properties of alpha(1)-adrenoceptor-activated nonselective cation channels (alpha(1)-AR-NSCC) previously identified in rabbit portal vein smooth muscle. Such properties include activation by diacylglycerol; S-shaped current-voltage relationship; high divalent cation permeability; unitary conductance of 25 to 30 pS and augmentation by flufenamate and Ca(2+); and blockade by Cd(2+), La(3+), Gd(3+), SK&F96365, and amiloride. Reverse transcriptase-polymerase chain reaction and confocal laser scanning microscopy using TRP6-specific primers and antisera revealed that the level of TRP6 mRNA expression was remarkably high in both murine and rabbit portal vein smooth muscles as compared with other TRP subtypes, and the immunoreactivity to TRP6 protein was localized near the sarcolemmal region of single rabbit portal vein myocytes. Furthermore, treatment of primary cultured portal vein myocytes with TRP6 antisense oligonucleotides resulted in marked inhibition of TRP6 protein immunoreactivity as well as selective suppression of alpha(1)-adrenoceptor-activated, store depletion-independent cation current and Ba(2+) influx. These results strongly indicate that TRP6 is the essential component of the alpha(1)-AR-NSCC, which may serve as a store depletion-independent Ca(2+) entry pathway during increased sympathetic activity.
Transient receptor potential (TRP) proteins form plasma-membrane cation channels that act as sensors for diverse cellular stimuli. Here, we report a novel activation mechanism mediated by cysteine S-nitrosylation in TRP channels. Recombinant TRPC1, TRPC4, TRPC5, TRPV1, TRPV3 and TRPV4 of the TRPC and TRPV families, which are commonly classified as receptor-activated channels and thermosensor channels, induce entry of Ca(2+) into cells in response to nitric oxide (NO). Labeling and functional assays using cysteine mutants, together with membrane sidedness in activating reactive disulfides, show that cytoplasmically accessible Cys553 and nearby Cys558 are nitrosylation sites mediating NO sensitivity in TRPC5. The responsive TRP proteins have conserved cysteines on the same N-terminal side of the pore region. Notably, nitrosylation of native TRPC5 upon G protein-coupled ATP receptor stimulation elicits entry of Ca(2+) into endothelial cells. These findings reveal the structural motif for the NO-sensitive activation gate in TRP channels and indicate that NO sensors are a new functional category of cellular receptors extending over different TRP families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.