Although animal models of Alzheimer's disease (AD) recapitulate β-amyloid-dependent hippocampal synaptic and cognitive dysfunctions, it is poorly understood how cortex-dependent remote memory stabilization following initial hippocampal coding is affected. Here, we systematically analyzed biophysical and behavioral phenotypes, including remote memory functions, of 5XFAD APP/PS1 transgenic mice containing five familial AD mutations. We found that 5XFAD mice show hippocampal dysfunctions as observed by reduced levels of baseline transmission and long-term potentiation at Schaffer collateral-CA1 synapses. Hippocampus-dependent memory tested 1 day after contextual fear conditioning was also impaired age-dependently in 5XFAD mice, as correlated with the onset of hippocampal synaptic failures. Importantly, remote memory stabilization during 30 days after training significantly declined in 5XFAD mice at time well before the onset of hippocampal dysfunctions. Our results indicate that 5XFAD mice provide a useful model system to investigate the mechanisms and therapeutic interventions for multiple synaptic and memory dysfunctions associated with AD.
Here we report exocytosis of zymogen granules, as examined by multiphoton excitation imaging in intact pancreatic acini. Cholecystokinin induces Ca 2+ oscillations that trigger exocytosis when the cytosolic Ca 2+ concentration exceeds 1 microM. Zymogen granules fused with the plasma membrane maintain their Omega-shaped profile for an average of 220 s and serve as targets for sequential fusion of granules that are located within deeper layers of the cell. This secondary exocytosis occurs as rapidly as the primary exocytosis and accounts for most exocytotic events. Granule-granule fusion does not seem to precede primary exocytosis, indicating that secondary fusion events may require a plasma-membrane factor. This sequential-replenishment mechanism of exocytosis allows the cell to take advantage of a large supply of fusion-ready granules without needing to transport them to the plasma membrane.
J. Neurochem. (2010) 10.1111/j.1471‐4159.2010.06608.x Abstract β‐Site amyloid precursor protein cleaving enzyme 1 (BACE1) initiates amyloid‐β (Aβ) generation that is central to the pathophysiology of Alzheimer’s disease (AD). Therefore, lowering Aβ levels by BACE1 manipulations represents a key therapeutic strategy, but it remains unclear whether partial inhibition of BACE1, as expected for AD treatments, can improve memory deficits. In this study, we used heterozygous BACE1 gene knockout (BACE1+/−) mice to evaluate the effects of partial BACE1 suppression on different types of synaptic and cognitive dysfunctions in Alzheimer’s transgenic mice (5XFAD model). We found that ∼50% BACE1 reductions rescued deficits of 5XFAD mice not only in hippocampus‐dependent memories as tested by contextual fear conditioning and spontaneous alternation Y‐maze paradigms but also in cortex‐dependent remote memory stabilization during 30 days after contextual conditioning. Furthermore, 5XFAD‐associated impairments in long‐term potentiation (a synaptic model of learning and memory) and declines in synaptic plasticity/learning‐related brain‐derived neurotrophic factor‐tyrosine kinase B signaling pathways were prevented in BACE1+/−·5XFAD mice. Finally, these improvements were related with reduced levels of β‐secretase‐cleaved C‐terminal fragment (C99), Aβ peptides and plaque burden in relevant brain regions of BACE1+/−·5XFAD mice. Therefore, our findings provide compelling evidence for beneficial effects of partially BACE1‐inhibiting approaches on multiple forms of functional defects associated with AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.