SUMMARYWe evaluated total energy consumption and CO 2 emissions in the phases of a city gas utilization system from obtaining raw materials to consuming the product. Assuming monthly and hourly demand figures for electricity, heat for space heating, and hot water in a typical hospital, we explore the optimal size and operation of a city gas system that minimizes the life cycle CO 2 emissions or total cost. The cost-effectiveness of conventional cogeneration, a solar heating system, and hybrid cogeneration utilizing solar heat is compared. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as the on/off condition of switches. As a result of optimization, the hybrid cogeneration can reduce annual CO 2 emissions by 43% compared with the system without cogeneration. The sensitivity of CO 2 reduction and cost to the scale of the CGS is also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.