High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5–13 Hz) and low-beta (13–20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound sources in which such components are artificially cut off, suggesting that high-resolution audio with inaudible high-frequency components induces a relaxed attentional state without conscious awareness.
High-quality digital sound sources with inaudible high-frequency components (above 20 kHz) have become available because of recent advances in information technology. Listening to such sounds has been shown to increase the α-band power of an electroencephalogram (EEG). The present study scrutinized the time course of this effect by recording EEG along with autonomic measures (skin conductance level and heart rate) and facial electromyograms (corrugator supercilii and zygomaticus major). Twenty university students (19-24 years old) listened to two types of a 200-s musical excerpt (J. S. Bach's French Suite No. 5) with or without inaudible high-frequency components using a double-blind method. They were asked to rate the sound quality and to judge which excerpt contained high-frequency components. High-α EEG power (10.5-13 Hz) was larger for the excerpt with high-frequency components than for the excerpt without them. This effect was statistically significant only in the last quarter of the period (150-200 s). Participants were not able to distinguish between the excerpts, which did not produce any discernible differences in subjective, autonomic, and facial muscle measures. This study shows that inaudible high-frequency components have an impact on human brain activity without conscious awareness. Unlike a standard test for sound quality, at least 150 s of exposure is required to examine this effect in future research.
Hearing fast-tempo music in the background is shown to affect the pace of motor behavior. However, the mechanism underlying this phenomenon remains unclear. We investigated how tempo influences behavioral pace in a simple perceptual-motor task in which participants heard background sound sequences (30, 60, 120, 180, and 240 bpm) while performing a line-tracing task. The order of the tempo conditions (ascending vs. descending series of tempo) was manipulated. When sound sequences changed from slower to faster tempi (that is, ascending series), behavioral pace accelerated. However, the pace did not change in the descending series. The subjective arousal level increased under faster tempo sounds regardless of tempo series. The results indicated that the ongoing tempo of background sounds did not determine the behavioral pace directly through increased arousal or perceptual-motor synchronization. Not only the ongoing tempo but also the preceding tempo of background sounds is shown to be an important factor for behavioral pace change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.