The mobility of sustained molecules is influenced by viscoelasticity, which is strongly correlated with the diffusional property in polymeric liquid. However, the study of transient networks formed by a reversible crosslink, which is the viscoelastic liquid, was insufficient due to the absence of a model system. We compare the viscoelastic and diffusional properties of the transient networks, using the model system with controlled network connectivity (Tetra-PEG slime). According to independent measurements of viscoelasticity and diffusion, the root-mean-square distance the polymer diffuses during the viscoelastic relaxation time shows a large deviation from the self-size of the polymer, which is contrary to the conventional understanding. This decoupling between viscoelasticity and diffusion is unique for transient networks, suggesting that the viscoelastic relaxation is not induced by the diffusion of one prepolymer, particularly in the network with low connectivity. These findings will provide a definite basis for discussion to understand the viscoelasticity in transient networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.