Wearable haptic displays can provide haptic information while allowing for free body movement. Among these haptic displays, pneumatic haptic displays have the advantages of flexibility and lightweight; however, they require bulky air tubes and a heavy air compressor. To solve this problem, we propose a wearable haptic display that uses a liquid-to-gas phase change actuator and a Peltier device as a way to reduce the size of the entire system. A low-boiling-point liquid is encapsulated in the flexible bladder of the actuator, and the vaporization of the liquid, which induces the inflation of the actuator, is controlled by the external Peltier device. In this study, we implemented a pressure sensor to monitor pressure inside the liquid-to-gas phase change actuator. The pressure measurement will contribute to controlling the generated normal force. First, we characterized the pressure response concerning the design of the liquid-togas phase change actuator. Next, we evaluated the output normal force of the haptic display and confirmed that the maximum output force reached a few N, which is a similar level to the off-the-shelf wearable haptic display devices. Finally, a sensory evaluation revealed that the experimental participants perceived the haptic stimulus to their fingertips provided by the proposed haptic display in a few seconds. According to the obtained results, the proposed haptic display can be applied to applications such as human interfaces to provide force, allowing for a response time of a few seconds.INDEX TERMS Haptic display, liquid-to-gas phase change actuator, soft robotics, haptics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.