Six distinct genes have been identified as belonging to the type IV collagen gene family. They can be organized into three sets, i.e., COL4A1/COL4A2, COL4A3/COL4A4, and COL4A5/COL4A6, which are localized on three different chromosomes in humans, 13, 2, and X, respectively. Within each set the genes are aligned head-to-head and their expression is regulated by bidirectional promoters between the genes. Transcriptional regulation of the COL4A1/COL4A2 set has been well characterized. The transcription of COL4A6 seems to be controlled by two alternative promoters. While collagen IV molecules composed of alpha1 and alpha2 chains are broadly distributed, molecules comprising combinations of the other four chains, alpha3-alpha6, are important components of specialized basement membranes. The precise chain composition of triple-helical molecules assembled from the alpha3-alpha6 chains is not entirely clear, but it is hypothesized that alpha3-alpha5 chains and alpha5 and alpha6 chains form heterotrimeric molecules. Several pieces of evidence indicate that alpha3/alpha4/alpha5 molecules and alpha5/alpha6 molecules are components of the basement membrane network. This helps explain the observation that the kidney and skin basement membranes from patients with Alport syndrome caused by mutations in the alpha5 coding gene, COL4A5, are defective in the alpha3, alpha4, and alpha6 chains together with the alpha5 chain. Large deletions involving the COL4A5 and COL4A6 genes have been found in rare cases of diffuse leiomyomatosis associated with Alport syndrome.
We first completed the primary structure of the mouse alpha5(IV) and alpha6(IV) chains, from which synthetic peptides were produced and a chain-specific monoclonal antibodies were raised. Expression of collagen IV genes in various basement membranes underlying specific organ epithelia was analyzed by immunohistochemical staining using these monoclonal antibodies and other antibodies from human and bovine sequences. It was possible to predict the presence of the three collagen IV molecules: [alpha1(IV)](2) alpha2(IV), alpha3(IV)alpha4(IV)alpha5(IV), and [alpha5(IV)](2)alpha6(IV). In skin basement membrane two of the three forms, [alpha1(IV)](2)alpha2(IV) and [alpha5(IV)](2)alpha6(IV), were detected. The alpha3(IV)alpha4(IV)alpha5(IV) molecule was observed as the major form in glomerulus, alveolus, and choroid plexus, where basement membranes function as filtering units. The molecular form [alpha5(IV)](2)alpha6(IV) was present in basement membranes in tubular organs such as the epididymis, where the tubes need to expand in diameter. Thus, the distribution of the basement membranes with different molecular composition is consistent with tissue-specific function.
We first isolated and characterized genomic DNA fragments that cover the 5P flanking sequences of COL4A3 and COL4A4 encoding the human basement membrane K K3(IV) and K K4(IV) collagen chains, respectively. Nucleotide sequence analysis indicated that the two genes are arranged head-to-head. To determine transcription start site for COL4A4 gene, we performed RACE and RNase protection assays, indicating that there are two alternative transcripts presumably derived from two different promoters. Interestingly, one transcription start site (from exon 1P) of COL4A4 is only 5 bp away from the reported transcription start site of COL4A3, whereas the other transcript (from exon 1) starts 373 nucleotides downstream from the first one, generating the two kinds of transcripts that differ in the 5P UTR regions. Expression of these two transcripts appears tissuespecific; exon 1 transcript was expressed predominantly in epithelial cells, while exon 1P transcript showed rather ubiquitous and low expression. The nucleotide sequence of the promoter region is composed of dense CpG dinucleotides, GC boxes, CTC boxes and a CCAAT box but no TATA box. These results provide information to delineate the promoter activity for the tissue-specific expression of the six type IV collagen genes and basement membrane assembly in different tissues and organs.z 1998 Federation of European Biochemical Societies.
The present study aims to identify alpha chains of type IV collagen in the basement membrane of the mouse ovarian follicle and examine their changes during follicular development using immunofluorescence microscopy with specific monoclonal antibodies. The basement membrane of the serous mesothelium enveloping the ovary contained all alpha chains of type IV collagen, alpha1(IV) through alpha6(IV) chains. Primordial follicles showed a distinct immunoreactivity against all six alpha chains in their basement membranes. Immunolabeling for alpha3(IV) and alpha4(IV) chains was almost eliminated in the primary follicles. In basement membranes of secondary and Graafian follicles, the immunofluorescent reaction of alpha3(IV) and alpha4(IV) chains disappeared in Graafian follicles, a partial reduction in fluorescent immunostaining intensity to alpha5(IV) and alpha6(IV) chains was observed; only alpha1(IV) and alpha2(IV) chains were not degraded throughout follicular development. On atretic follicles, in addition to alpha1(IV) and alpha2(IV) chains, alpha3(IV), alpha4(IV), alpha5(IV) and alpha6(IV) chains frequently persisted. A basement membrane-like matrix within the follicular granulosa cell layer, such as the focimatrix (focal intraepithelial matrix) and/or Call-Exner body, was also recognized in mouse secondary and Graafian follicles and contained alpha1(IV), alpha2(IV), alpha5(IV) and alpha6(IV) chains but not alpha3(IV) and alpha4(IV) chains. We expect that the decrease in alpha(IV) chains prompts follicular development and is a prerequisite condition for follicular maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.