The ADF (actin-depolymerizing factor)/cofilin family is a stimulus-responsive mediator of actin dynamics. In contrast to the mechanisms of inactivation of ADF/cofilin by kinases such as LIM-kinase 1 (LIMK1), much less is known about its reactivation through dephosphorylation. Here we report Slingshot (SSH), a family of phosphatases that have the property of F actin binding. In Drosophila, loss of ssh function dramatically increased levels of both F actin and phospho-cofilin (P cofilin) and disorganized epidermal cell morphogenesis. In mammalian cells, human SSH homologs (hSSHs) suppressed LIMK1-induced actin reorganization. Furthermore, SSH and the hSSHs dephosphorylated P cofilin in cultured cells and in cell-free assays. Our results strongly suggest that the SSH family plays a pivotal role in actin dynamics by reactivating ADF/cofilin in vivo.
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases ∼10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1β induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin–rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1β and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.
Ecdysteroids mediate a wide variety of developmental and physiological events in insects. In the postembryonic development of insects, ecdysone is synthesized in the prothoracic gland (PG). Although many studies have revealed the biochemical and physiological properties of the enzymes for ecdysteroid biosynthesis, most of the molecular identities of these enzymes have not been elucidated. Here we describe an uncharacterized cytochrome P450 gene, designated Cyp306a1, that is essential for ecdysteroid biosynthesis in the PGs of the silkworm Bombyx mori and fruit fly Drosophila melanogaster. Using the microarray technique for analyzing gene expression profiles in PG cells during Bombyx development, we identified two PG-specific P450 genes whose temporal expression patterns are correlated with changes in ecdysteroid titer during development. Amino acid sequence analysis showed that one of the Bombyx P450 genes belongs to the CYP306A1 subfamily. The temporal and spatial expression pattern of the Drosophila Cyp306a1 homolog is essentially the same as that of Bombyx Cyp306a1. We also found that Drosophila Cyp306a1 is disrupted in the phantom (phm) mutant, known also as the Halloween mutant. The morphological defects and decreased expression of ecdysone-inducible genes in phm suggest that this mutant cannot produce a high titer of ecdysone. Finally we demonstrate that S2 cells transfected with Cyp306a1 convert ketodiol to ketotriol via carbon 25 hydroxylation. These results strongly suggest that CYP306A1 functions as a carbon 25 hydroxylase and has an essential role in ecdysteroid biosynthesis during insect development.
Growth cone motility and morphology are based on actin-filament dynamics. Cofilin plays an essential role for the rapid turnover of actin filaments by severing and depolymerizing them. The activity of cofilin is repressed by phosphorylation at Ser3 by LIM kinase (LIMK, in which LIM is an acronym of the three gene products Lin-11, Isl-1, and Mec-3) and is reactivated by dephosphorylation by phosphatases, termed Slingshot (SSH). We investigated the roles of cofilin, LIMK, and SSH in the growth cone motility and morphology and neurite extension by expressing fluorescence protein-labeled cofilin, LIMK1, SSH1, or their mutants in chick dorsal root ganglion (DRG) neurons and then monitoring live images of growth cones by time-lapse video fluorescence microscopy. The expression of LIMK1 remarkably repressed growth cone motility and neurite extension, whereas the expression of SSH1 or a nonphosphorylatable S3A mutant of cofilin enhanced these events. The fan-like shape of growth cones was disorganized by the expression of any of these proteins. The repressive effects on growth cone behavior by LIMK1 expression were significantly rescued by the coexpression of S3A-cofilin or SSH1. These findings suggest that LIMK1 and SSH1 play critical roles in controlling growth cone motility and morphology and neurite extension by regulating the activity of cofilin and may be involved in signaling pathways that regulate stimulus-induced growth cone guidance. Using various mutants of cofilin, we also obtained evidence that the actin-filament-severing activity of cofilin is critical for growth cone motility and neurite extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.