Mammalian cells have developed diverse strategies to restrict retroviral infection. Retroviruses have therefore evolved to counteract such restriction factors, in order to colonize their hosts. Tripartite motif-containing 5 isoform-alpha (TRIM5alpha) protein from rhesus monkey (TRIM5alpharh) restricts human immunodeficiency virus type 1 (HIV-1) infection at a postentry, preintegration stage in the viral life cycle, by recognizing the incoming capsid and promoting its premature disassembly. TRIM5alpha comprises an RBCC (RING, B-box 2 and coiled-coil motifs) domain and a B30.2(SPRY) domain. Sequences in the B30.2(SPRY) domain dictate the potency and specificity of the restriction. As TRIM5alpharh targets incoming mature HIV-1 capsid, but not precursor Gag, it was assumed that TRIM5alpharh did not affect HIV-1 production. Here we provide evidence that TRIM5alpharh, but not its human ortholog (TRIM5alphahu), blocks HIV-1 production through rapid degradation of HIV-1 Gag polyproteins. The specificity for this restriction is determined by sequences in the RBCC domain. Our observations suggest that TRIM5alpharh interacts with HIV-1 Gag during or before Gag assembly through a mechanism distinct from the well-characterized postentry restriction. This finding demonstrates a cellular factor blocking HIV-1 production by actively degrading a viral protein. Further understanding of this previously unknown restriction mechanism may reveal new targets for future anti-HIV-1 therapy.
Vesicular stomatitis virus (VSV) can replicate in malignant cells more efficiently than in normal cells. Although the selective replication appears to be caused by defects in the interferon (IFN) system in malignant cells, the mechanisms which render these cells less responsive to IFN remain poorly understood. Here we present evidence that an activated RAS/Raf1/MEK/ERK pathway plays a critical role in the defects. NIH 3T3 or human primary cells stably expressing active RAS or Raf1 were rapidly killed by VSV. Although IFNalpha treatment no longer protected the RAS- or Raf1-overexpressing cells from VSV infection, responsiveness to IFNalpha was restored following treatment with the mitogen-activated protein kinase kinase (MEK) inhibitor U0126. Similarly, human cancer-derived cell lines became more responsive to IFNalpha in conjunction with U0126 treatment. Intriguingly, dual treatment with both IFNalpha and U0126 severely reduced the levels of viral RNAs in the infected cells. Moreover, cancer cells showed defects in inducing an IFNalpha-responsive factor, MxA, which is known to block VSV RNA synthesis, and U0126 restored the MxA expression. Our observations suggest that activation of the extracellular signal-regulated protein kinase (ERK) signaling leads to the defect in IFNalpha-mediated upregulation of MxA protein, which facilitates VSV oncolysis. In view of the fact that 30% of all cancers have constitutive activation of the RAS/Raf1/MEK/ERK pathway, VSV would be an ideal oncolytic virus for targeting such cancers.
Since HIV-1 replication is modulated at multiple stages by host cell factors, identification and characterization of those host cell factors are expected to contribute to the development of novel anti-HIV therapeutics. Previous studies showed that a C-terminally truncated cytosolic form of cleavage and polyadenylation-specific factor 6 (CPSF6-358) inhibits HIV-1 infection through interference with HIV-1 trafficking to the nucleus. Here we identified and characterized a different configuration of C-terminally truncated human CPSF6 (hCPSF6-375) through cDNA expression cloning coupled with ganciclovir-mediated lethal selection. Notably, hCPSF6-375, but not mouse CPSF6-358 (mCPSF6-358) as previously reported, remarkably interfered with viral cDNA synthesis after HIV-1 infection. Moreover, we found that hCPSF6-375 aberrantly accelerated the disassembly of the viral capsid in target cells, while CPSF6-358 did not. Sequence comparison of CPSF6-375 and CPSF6-358 cDNAs showed a lack of exon 6 and additional coding sequence for 54 amino acid residues in the C terminus of hCPSF6-375. Mutational analyses revealed that the residues encoded by exon 6, but not the C-terminal 54 residues in hCPSF6-375, is responsible for impaired viral cDNA synthesis by hCPSF6-375. This is the first report demonstrating a novel mode of HIV-1 inhibition by truncated forms of CPSF6 that involves rapid capsid disassembly and inhibition of viral cDNA synthesis. These findings could facilitate an increased understanding of viral cDNA synthesis in light of the viral capsid disassembly.
The xenotropic murine leukemia virus-related virus (XMRV) is a human retrovirus, recently isolated from tissues of prostate cancer patients with impaired RNase L activity. In this study, we evaluated 10 licensed anti-HIV-1 compounds for their activity against XMRV, including protease inhibitors (PI), nucleoside reverse transcriptase (RT) inhibitors (NRTI), non-nucleoside RT inhibitors (NNRTI) and an integrase inhibitor. No PI affected XMRV production; even high concentrations of Ritonavir failed to inhibit the maturation of XMRV Gag polyproteins. Among the NRTI, NNRTI and integrase inhibitors used in this study, only AZT blocked XMRV infection and replication through inhibition of viral reverse transcription. This sensitivity of XMRV to AZT may be explained by the modest homology in the motif D sequences of HIV-1 and XMRV reverse transcriptases. If XMRV becomes established as an etiological agent for prostate cancer or other diseases, AZT may be useful for preventing or treating XMRV infections in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.