Objective-Inflammatory monocytes/macrophages produce various proteinases, including matrix metalloproteinases, and degradation of the extracellular matrix by these activated proteinases weakens the mechanical strength of atherosclerotic plaques, which results in a rupture of the plaque. Peroxisome proliferator-activated receptor-γ induces a polarity shift of monocytes/macrophages toward less inflammatory phenotypes and has the potential to prevent atherosclerotic plaque ruptures. Therefore, we hypothesized that nanoparticle-mediated targeted delivery of the peroxisome proliferatoractivated receptor-γ agonist pioglitazone into circulating monocytes could effectively inhibit plaque ruptures in a mouse model. Approach and Results-We prepared bioabsorbable poly(lactic-co-glycolic-acid) nanoparticles containing pioglitazone (pioglitazone-NPs). Intravenously administered poly(lactic-co-glycolic-acid) nanoparticles incorporated with fluorescein isothiocyanate were found in circulating monocytes and aortic macrophages by flow cytometric analysis. Weekly intravenous administration of pioglitazone-NPs (7 mg/kg per week) for 4 weeks decreased buried fibrous caps, a surrogate marker of plaque rupture, in the brachiocephalic arteries of ApoE −/− mice fed a high-fat diet and infused with angiotensin II. In contrast, administration of control-NPs or an equivalent dose of oral pioglitazone treatment produced no effects. Pioglitazone-NPs inhibited the activity of matrix metalloproteinases and cathepsins in the brachiocephalic arteries. Pioglitazone-NPs regulated inflammatory cytokine expression and also suppressed the expression of extracellular matrix metalloproteinase inducer in bone marrow-derived macrophages. Conclusions-Nanoparticle-mediated delivery of pioglitazone inhibited macrophage activation and atherosclerotic plaque ruptures in hyperlipidemic ApoE −/− mice. These results demonstrate a promising strategy with a favorable safety profile to prevent atherosclerotic plaque ruptures.
A 16-year-old boy had cervical aortic arch associated with 22q11.2 deletion. This case is the first one reported of cervical aortic arch in which deletion within the 22q11.2 band was detected by the fluorescent in situ hybridization (FISH) method.
Aim: Abdominal aortic aneurysm (AAA) is a lethal and multifactorial disease. To prevent a rupture and dissection of enlarged AAA, prophylactic surgery and stenting are currently available. There are, however, no medical therapies preventing these complications of AAA. Statin is one of the candidates, but its efficacy on AAA formation/progression remains controversial. We have previously demonstrated that nanoparticles (NPs) incorporating pitavastatin (Pitava-NPs)—clinical trials using these nanoparticles have been already conducted—suppressed progression of atherosclerosis in apolipoprotein E-deficient ( Apoe −/− ) mice. Therefore, we have tested a hypothesis that monocytes/macrophages-targeting delivery of pitavastatin prevents the progression of AAA. Methods: Angiotensin II was intraperitoneally injected by osmotic mini-pumps to induce AAA formation in Apoe −/− mice. NPs consisting of poly(lactic-co-glycolic acid) were used for in vivo delivery of pitavastatin to monocytes/macrophages. Results: Intravenously administered Pitava-NPs (containing 0.012 mg/kg/week pitavastatin) inhibited AAA formation accompanied with reduction of macrophage accumulation and monocyte chemoattractant protein-1 (MCP-1) expression. Ex vivo molecular imaging revealed that Pitava-NPs not only reduced macrophage accumulation but also attenuated matrix metalloproteinase activity in the abdominal aorta, which was underpinned by attenuated elastin degradation. Conclusion: These results suggest that Pitava-NPs inhibit AAA formation associated with reduced macrophage accumulation and MCP-1 expression. This clinically feasible nanomedicine could be an innovative therapeutic strategy that prevents devastating complications of AAA.
Key Clinical MessageWe describe the case that persistent atrial fibrillation refractory to rhythm control by pharmacotherapy and electrical cardioversions caused tachycardia‐induced cardiomyopathy with low ejection fraction and hemodynamic instability. Mechanical hemodynamic support using an intra‐aortic balloon pump is one of the choices of hemodynamic support during catheter ablation by pulmonary vein isolation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.