Background Central venous catheterization is a procedure in which a doctor inserts a catheter into a patient's vein for transfusions. Risks of this procedure include bleeding from the puncture of blood vessels and pneumothorax caused by pleural puncture. To avoid these and other risks, physicians are required to ensure that the needle is inserted securely and that it stops within the vein.
MethodsWe propose a robotic system for assisting venous puncture that is capable of alleviating the difficulties encountered during the conventional procedure, as well as minimizing the risks of complications. This paper describes the design and results of experiments conducted using a needle insertion manipulator. First, we investigated the relation between insertion force and angle into the vein to determine the appropriate insertion angle in relation to the blood vessel under physical conditions. The results indicated that the reaction force can be used to gauge whether the needle has been inserted into the vein in cases where the insertion angle is in the range 10-20 . Based on this result, we determined the mechanisms of the puncture device, which comprises a small, compact configuration. Experiments for accuracy validation were performed on a phantom.
ResultsWe evaluated the positioning accuracy using ultrasound images, and the results indicated an accuracy of 1.0 mm or better, which is considered feasible for venous puncture. In the phantom experiments, we confirmed that our manipulator was capable of placing the needle within the vein.
ConclusionsThe feasibility of this system was demonstrated in our experiments. Further studies, such as in vivo experiments, are required. Copyright
Central venous catheterization is associated with potential complications secondary to accidental puncture, including venous bleeding and pneumothorax. We developed a system that avoids these complications and simplifies the procedure using a robot to provide puncture assistance. We herein report a puncture experiment conducted in vivo in a porcine to evaluate the manipulator. The right and left jugular veins of a pig were punctured five times each through both opened and unopened skin at a puncture angle and speed. A venous placement rate of 80% was obtained with opened skin. A much lower rate of 40% was obtained with unopened skin. One of five attempts in opened skin was unsuccessful, likely because of the stick-slip phenomenon. This system was effective for jugular venous puncture of opened skin. Future studies should focus on puncture conditions that facilitate needle placement, inhibit the stick-slip phenomenon, and minimize needle bending due to the presence of skin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.