BackgroundRecent evidence proposes a novel concept that mammalian natural antisense RNAs play important roles in cellular homeostasis by regulating the expression of several genes. Identification and characterization of retroviral antisense RNA would provide new insights into mechanisms of replication and pathogenesis. HIV-1 encoded-antisense RNAs have been reported, although their structures and functions remain to be studied. We have tried to identify and characterize antisense RNAs of HIV-1 and their function in viral infection.ResultsCharacterization of transcripts of HEK293T cells that were transiently transfected with an expression plasmid with HIV-1NL4–3 DNA in the antisense orientation showed that various antisense transcripts can be expressed. By screening and characterizing antisense RNAs in HIV-1NL4–3-infected cells, we defined the primary structure of a major form of HIV-1 antisense RNAs, which corresponds to a variant of previously reported ASP mRNA. This 2.6 kb RNA was transcribed from the U3 region of the 3′ LTR and terminated at the env region in acutely or chronically infected cell lines and acutely infected human peripheral blood mononuclear cells. Reporter assays clearly demonstrated that the HIV-1 LTR harbours promoter activity in the reverse orientation. Mutation analyses suggested the involvement of NF-κΒ binding sites in the regulation of antisense transcription. The antisense RNA was localized in the nuclei of the infected cells. The expression of this antisense RNA suppressed HIV-1 replication for more than one month. Furthermore, the specific knockdown of this antisense RNA enhanced HIV-1 gene expression and replication.ConclusionsThe results of the present study identified an accurate structure of the major form of antisense RNAs expressed from the HIV-1NL4–3 provirus and demonstrated its nuclear localization. Functional studies collectively demonstrated a new role of the antisense RNA in viral replication. Thus, we suggest a novel viral mechanism that self-limits HIV-1 replication and provides new insight into the viral life cycle.
Epigenetic gene regulation linked to oncogenic pathways is an important focus of cancer research. KDM3A, a histone H3 lysine 9 (H3K9) demethylase, is known to have a pro-tumorigenic function. Here, we showed that KDM3A contributes to liver tumor formation through the phosphatidylinositol 3-kinase (PI3K) pathway, which is often activated in hepatocellular carcinoma. Loss of Kdm3a attenuated tumor formation in Pik3ca transgenic (Tg) mouse livers. Transcriptome analysis of pre-cancerous liver tissues revealed that the expression of activator protein 1 (AP-1) target genes was induced by PI3K activation, but blunted upon Kdm3a ablation. Particularly, the expression of Cd44, a liver cancer stem marker, was regulated by AP-1 in a Kdm3a-dependent manner. We identified Cd44-positive hepatocytes with epithelial-mesenchymal transition-related expression profiles in the Pik3ca Tg liver and confirmed their in vivo tumorigenic capacity. Notably, the number and tumor-initiating capacity of Cd44-positive hepatocytes were governed by Kdm3a. As a mechanism in Kdm3a-dependent AP-1 transcription, Kdm3a recruited c-Jun to the AP-1 binding sites of Cd44, Mmp7 and Pdgfrb without affecting c-Jun expression. Moreover, Brg1, a component of the SWI/SNF chromatin remodeling complex, interacted with c-Jun in a Kdm3a-dependent manner and was bound to the AP-1 binding site of these genes. Finally, KDM3A and c-JUN were co-expressed in 33% of human premalignant lesions with PI3K activation. Our data suggest a critical role for KDM3A in the PI3K/AP-1 oncogenic axis and propose a novel strategy for inhibition of KDM3A against liver tumor development under PI3K pathway activation.
One of the hallmarks of cancer, global gene expression alteration, is closely associated with the development and malignant characteristics associated with adult T-cell leukemia (ATL) as well as other cancers. Here, we show that aberrant overexpression of the Ellis Van Creveld (EVC) family is responsible for cellular Hedgehog (HH) activation, which provides the pro-survival ability of ATL cells. Using microarray, quantitative RT-PCR and immunohistochemistry we have demonstrated that EVC is significantly upregulated in ATL and human T-cell leukemia virus type I (HTLV-1)-infected cells. Epigenetic marks, including histone H3 acetylation and Lys4 trimethylation, are specifically accumulated at the EVC locus in ATL samples. The HTLV-1 Tax participates in the coordination of EVC expression in an epigenetic fashion. The treatment of shRNA targeting EVC, as well as the transcription factors for HH signaling, diminishes the HH activation and leads to apoptotic death in ATL cell lines. We also showed that a HH signaling inhibitor, GANT61, induces strong apoptosis in the established ATL cell lines and patient-derived primary ATL cells. Therefore, our data indicate that HH activation is involved in the regulation of leukemic cell survival. The epigenetically deregulated EVC appears to play an important role for HH activation. The possible use of EVC as a specific cell marker and a novel drug target for HTLV-1-infected T-cells is implicated by these findings. The HH inhibitors are suggested as drug candidates for ATL therapy. Our findings also suggest chromatin rearrangement associated with active histone markers in ATL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.