Mn52Bi48 (15 nm) and Mn54Bi24Cu21 (15 nm) thin films were prepared by the magnetron sputtering and vacuum annealing at 350 °C, and the variations of their structures and magnetic properties with 30 keV Kr+ ion irradiation were studied. The MnBi and MnBiCu films exhibited saturation magnetizations Ms of 180 emu/cc and 210 emu/cc, the coercivities Hc of 10 kOe and 3.4 kOe, respectively. The Ms and Hc of the MnBi abruptly vanished by the irradiation of ion dose at 3 × 1014 ions/cm2, while those of the MnBiCu film gradually decreased with increasing the ion dose and became zero at 5 × 1013 ions/cm2. The different trend on the ion irradiation between MnBi and MnBiCu films is understood by the surface structure of the film, i.e., the MnBi has convex islands on its surface, which protect the underneath NiAs-type MnBi from the irradiation, while the MnBiCu has rather flat surface, and its crystal structure was uniformly modified by the irradiation. From the surface flatness and the uniformity of the MnBiCu film, as well as the low annealing temperature of 350 °C, it was concluded that the MnBiCu film is one of the attractive materials for high-density ion irradiation bit patterned media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.