The purpose of this research was to enable component separation based on simple control of the flow rate. We investigated a method that eliminated the need for a centrifuge and enabled easy component separation on the spot without using a battery. Specifically, we adopted an approach that uses microfluidic devices, which are inexpensive and highly portable, and devised the channel within the fluidic device. The proposed design was a simple series of connection chambers of the same shape, connected via interconnecting channels. In this study, polystyrene particles with different sizes were used, and their behavior was evaluated by experimentally observing the flow in the chamber using a high-speed camera. It was found that the objects with larger particle diameters required more time to pass, whereas the objects with smaller particle diameters flowed in a short time; this implied that the particles with a smaller size could be extracted more rapidly from the outlet. By plotting the trajectories of the particles for each unit of time, the passing speed of the objects with large particle diameters was confirmed to be particularly low. It was also possible to trap the particles within the chamber if the flow rate was below a specific threshold. By applying this property to blood, for instance, we expected plasma components and red blood cells to be extracted first.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.