Pyrrolysyl-tRNA synthetase (PylRS) esterifies pyrrolysine to tRNA(Pyl). In this study, N(epsilon)-(tert-butyloxycarbonyl)-L-lysine (BocLys) and N(epsilon)-allyloxycarbonyl-L-lysine (AlocLys) were esterified to tRNA(Pyl) by PylRS. Crystal structures of a PylRS catalytic fragment complexed with BocLys and an ATP analog and with AlocLys-AMP revealed that PylRS requires an N(epsilon)-carbonyl group bearing a substituent with a certain size. A PylRS(Y384F) mutant obtained by random screening exhibited higher in vitro aminoacylation and in vivo amber suppression activities with BocLys, AlocLys, and pyrrolysine than those of the wild-type PylRS. Furthermore, the structure-based Y306A mutation of PylRS drastically increased the in vitro aminoacylation activity for N(epsilon)-benzyloxycarbonyl-L-lysine (ZLys). A PylRS with both the Y306A and Y384F mutations enabled the large-scale preparation (>10 mg per liter medium) of proteins site-specifically containing N(epsilon)-(o-azidobenzyloxycarbonyl)-L-lysine (AzZLys). The AzZLys-containing protein was labeled with a fluorescent probe, by Staudinger ligation.
Leucyl-tRNA synthetase (LeuRS) has a specific post-transfer editing activity directed against mischarged isoleucine and similar noncognate amino acids. We describe the post-transfer-editing and product complexes of Thermus thermophilus LeuRS (LeuRSTT) with tRNA(Leu) at 2.9- to 3.3-A resolution. In the post-transfer-editing configuration, A76 binds in the editing active site exactly as previously found for the adenosine moiety of a small-molecule editing-substrate analog. The 60 C-terminal residues of LeuRSTT, unseen in previous structures, fold into a compact domain flexibly linked to the rest of the molecule and interacting with the G19-C56 tertiary base pair of tRNA(Leu). LeuRS recognition of tRNA(Leu) depends essentially on tRNA shape rather than base-specific interactions. The structures show that considerable domain rotations, notably of the editing domain, accompany the tRNA-3' end dynamics associated successively with aminoacylation, post-transfer editing and product release.
SUMMARY
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs from pre-microRNA. What makes the two Dicers specific for their biological substrates? We find that purified Dicer-2 can efficiently cleave pre-miRNA, but that inorganic phosphate and the Dicer-2 partner protein R2D2 inhibit pre-miRNA cleavage. Dicer-2 contains C-terminal RNase III domains that mediate RNA cleavage, and an N-terminal helicase motif whose function is unclear. We show that Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP; ATP hydrolysis is required for Dicer-2 to process long dsRNA, but not pre-miRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, can generate siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.