Design and manufacturing of composite tooling are crucial in producing cost effective composite components with high quality. Aimed at identifying the optimal design of integrally heated tools in terms of their thermal performance, a number of design variables were investigated numerically in a previous study. Statistical analysis of the simulation results revealed that a parallel layout of heating channels can significantly improve the heating performance, and channel separation should be determined according to the production requirement. In the present work, an integrally water-heated tool is manufactured according to the optimal design after some geometry amendments. Thermal properties of the constituent materials of the produced tool are also measured. A numerical model of the tool geometry is simulated with actual material properties and boundary conditions to calculate the response variables of temperature uniformity and heating rate. The numerical results are verified by experimental testing, using a thermal camera and thermocouples. Good agreement between the simulation and the experimental results confirmed the suitability of numerical simulation in predicting the thermal performance of integrally heated tooling and the validity of the boundary conditions.
The tool geometry is one of the most effective factors on the surface quality of turned products. This study aims to investigate the influence of different tool geometries on surface roughness of turned aluminum alloy 1050 that has not been documented well in literature. Various levels of simultaneous cutting edge angles, included angle and tool nose radius were selected. Different single point tools of HSS (5% cobalt) were prepared. Four categories of experiments were performed according to the levels of the included angle. Each category consisted of five sets of tests based on the proposed levels of tool nose radius. The tests within each set were arranged according to the selected levels of end cutting edge angle with constant or simultaneous cutting edge angle. All tests were conducted on a heavy duty lathe machine, while the produced surface qualities were measured by a stylus type roughness tester. Experimental results deduced a proportional relationship between surface roughness and end cutting edge angle with constant cutting edge angle. Also, the results showed that the surface roughness increases with the increase of simultaneous end cutting edge angle up to a certain point called focus point angle after which decreases. Furthermore, the tool nose radius has an inverse effect on roughness, but the included angle affects positively. Finally, the maximum values of simultaneous end cutting edge angle that can produce acceptable surface finish were defined in accordance with the tool nose radii and included angles.
Integrally water-heated-of-Temperature variation and temperature cycling, during heating and cooling, affect the properties of tool material and may produce undesirable thermal effects that degrade the tool durability and performance, especially when the tool construction involves various materials. Hence, in the current study, the performance and the thermomechanical behaviour of an integrally water-heated tool have been investigated using finite element analysis method. The intended tool, in the current study, consists different materials of composite and metals and is designed to heat up to 90 C. Linear mechanical properties, CTEs and transient heating curve of each tool part are determined experimentally and set during the numerical analysis of tool structure to calculate the static thermal load effects of deformation, stress and strain. Comparing the numerical thermal effects with the ultimate stresses and strains of the tool materials concluded that no failure occurs with regard to static thermal loads. However, the calculated stresses are as much as the lowest magnitude of safety relates to the tool mould part made of Alepoxy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.