Genetic selection of disease resistant fish is a major strategy to improve health, welfare and sustainability in aquaculture. Mapping of single nucleotide polymorphisms (SNP) in the fish genome may be a fruitful tool to define relevant quantitative trait loci (QTL) and we here show its use for characterization of Vibrio anguillarum resistant rainbow trout (Oncorhynchus mykiss). Fingerlings were exposed to the pathogen V. anguillarum serotype O1 in a solution of 1.5 × 107 cfu/ml and observed for 14 days. Disease signs appeared 3 days post exposure (dpe) whereafter mortality progressed exponentially until 6 dpe reaching a total mortality of 55% within 11 days. DNA was sampled from all fish – including survivors – and analyzed on a 57 k Affymetrix SNP platform whereby it was shown that disease resistance was associated with a major QTL on chromosome 21 (Omy 21). Gene expression analyses showed that diseased fish activated genes associated with innate and adaptive immune responses. The possible genes associated with resistance are discussed.
Infections with the parasitic flagellate Ichthyobodo necator (Henneguy, 1883) cause severe skin and gill disease in rainbow trout Oncorhynchus mykiss (Walbaum, 1792) juveniles. The epidermal disturbances including hyperplasia and mucous cell exhaustion caused by parasitization are known, but no details on specific cellular and humoral reactions have been presented. By applying gene expression methods and immunohistochemical techniques, further details of immune processes in the affected skin can be presented. A population of I. necator was established in the laboratory and used to induce an experimental infection of juvenile rainbow trout. The course of infection was followed by sampling for parasite enumeration, immunohistochemistry (IHC) and quantitative PCR (qPCR) on days 0, 5, 9 and 14 post-infection. IHC showed a significant increase in the occurrence of IgM-positive cells in the skin of the infected fish, whereas IgT-positive cells were eliminated and the number of CD8-positive cells declined. qPCR studies supported the IHC findings showing a significant increase in IgM and a decrease in the CD8 gene expression. In addition, genes encoding innate immune genes such as lysozyme, SAA and cathelicidin 2 were up-regulated. Expression of cytokines (IL-1β, IL-4/13A, IL-6, IL-8, IL-10), the cell marker CD4 and the transcription factor GATA3 showed a significant increase after infection. Cytokine profiling including up-regulation of IL-4/13A and IL-10 genes and transcription factor GATA3 connected to the proliferation of IgM producing lymphocytes suggests a partial shift towards a Th2 response associated with the I. necator infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.