This study was designed and carried out to ascertain the situation and perceptions of end users of cassava flash drying equipment in Nigeria with the aim of giving suggestions to policies and approaches for improved technology. Forty-one processing firms were selected and interviewed. Descriptive analyses were used and a logistic regression model was estimated. The results revealed that 49% of the firms stopped using their flash dryers due to the low demand for high-quality cassava flour (HQCF) resulting from the high cost of processing occasioned by an inefficient heat-generating component. The estimated model provides evidence that cost effectiveness (p < 0.05) and energy cost (p < 0.10) are the two major determinants of the continuous usage of flash dryers in the study area. Forty-one percent of the firms indicated willingness to pay for any technical adjustment of their flash dryers, supposing such adjustment would improve on drying and the energy efficiency of the equipment up to 40%. The study recommends that machine fabricators in Nigeria and other African countries should be trained on the production of energy- and cost-efficient small-scale flash dryers. Again, the design and commercialization of flash dryers that can be mounted on mobile trucks for farm-gate processing should be encouraged to facilitate farm-gate processing, thereby reducing postharvest losses resulting from transporting perishable and bulky roots over a long distance.
The development and scaling out of flash-dryer innovations for more efficient, small-scale production of high-quality cassava flour (HQCF) and starch is described. The diagnoses of cassava-processing SMEs (small and medium enterprises) revealed their energy expenditures for drying were considerably higher than those of large-scale industrial companies, which was mostly due to suboptimal design of flash-drying systems. As a result, small-scale production of cassava starch and HQCF often incurs high production costs, incompatible with market prices of final products. Taking stock of this situation, RTB scientists have developed several innovations to optimize energy efficiency and costs, including a longer drying pipe, reengineered heat exchanger, larger blower for higher air velocity, and a higher product/air ratio. This was based on numerical modelling to determine the key design features of energy-efficient flash dryers, followed by construction and demonstration of a pilot-scale prototype. As a result, improved small-scale flash dryers are now being scaled out to the private sector in various countries, using the Scaling Readiness framework and achieving 10–15% gains in productivity and incomes. A method for diagnosis of process efficiency is also described, to identify technical bottlenecks and to document and measure the outcomes and impacts during the implementation of scaling-out projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.