Heavy and extra heavy crude oils usually have a high weight percentage of asphaltene, which could induce many problems during production to refining processes. Also, asphaltene has the main role on the high viscosity of the heavy and extra heavy crude oils. In this paper, the effects of asphaltene characteristics on the crude oil rheological properties have been experimentally and theoretically investigated using different classes of the suspension models. For experimental investigation, the asphaltene was first precipitated from the original heavy crude oil and then 10 well-defined reconstituted heavy oil samples are made by dispersing the asphaltene into the maltene (i.e., deasphalted heavy crude oil) for measuring viscosity at a wide range of temperatures from 25 to 85 °C. Then, the viscosity of the prepared reconstituted heavy oil samples was measured using a rotational rheometer at seven different temperatures. Moreover, for modeling the viscosity behavior of the heavy oil samples versus different asphaltene contents (0–12.22 vol %) at different temperatures (25–85 °C), six equations from three groups of suspension models are used, including Pal–Rhodes (with parameters of the shape factor ν and solvation constant K), Mooney, Krieger–Dougherty, and Brouwers (with parameters of the intrinsic viscosity [η] and the maximum packing volume fraction φmax), and Bicerano et al. and Santamaria-Holek and Mendoza (with parameters of the intrinsic viscosity [η] and the critical volume fraction φc). The results of experimental study indicate that the viscosity of the reconstituted heavy oil samples increases exponentially as the asphaltene content increases at a constant temperature. Also, the viscosity of the heavy oil samples decreases significantly with increasing the temperatures from 25 to 85 °C at a constant asphaltene volume fraction.
In this research, ultrahigh-molecular-weight polyethylene (UHMWPE)/multiwalled carbon nanotube (MWCNT) nanocomposites with different nanotube concentrations (0.5, 1.5, 2.5, and 3.5 wt %) were prepared via in situ polymerization with a novel, bisupported Ziegler-Natta catalytic system. Magnesium ethoxide [Mg(OEt) 2 ] and surface-functionalized MWCNTs were used as the support of the catalyst. Titanium tetrachloride (TiCl 4 ) accompanied by triethylaluminum constituted the Ziegler-Natta catalytic system. Preparation of the catalyst and the polymerization were carried out in the slurry phase under an argon atmosphere. Support of the catalyst on the MWCNTs was investigated with Fourier transform infrared spectroscopy. The results confirmed the interaction between the catalyst and the MWCNT hydroxyl groups. Intrinsic viscosity measurements showed an ultrahigh molecular weight in the produced samples. Scanning electron microscopy images confirmed the good dispersion of MWCNTs throughout the polyethylene (PE) matrix. The crystallization behavior of the samples was examined with differential scanning calorimetry. Its results showed that the crystal content of the samples increased with increasing MWCNT concentration up to 1.5 wt %. The same trend was observed for the crystallization temperature, whereas the melting temperature did not change with increasing MWCNT concentration up to 1.5 wt %, but it decreased beyond this concentration. In addition, thermogravimetric analysis results showed that the addition of MWCNTs noticeably improved all of the investigated thermal stability factors of the UHMWPE/MWCNT nanocomposites compared to those of pure PE. The results obtained from tensile testing revealed significant increases in the Young's modulus, yield stress, and ultimate tensile strength. This indicated a tremendous improvement in the mechanical properties of the PE/MWCNT nanocomposites compared to those of pure PE. V C 2012 Wiley Periodicals, Inc. J Appl Polym Sci 125: E453-E461, 2012
In this work, we synthesized carbon hollow spheres (CHSs) using the silica templating method, encapsulated 2-mercaptobenzimidazole (MBI) inhibitor in the CHSs and evaluated their corrosion inhibition performance upon exposure of mild steel to a saline solution containing the released inhibitor. The effects of silica template surface modification on the CHS structure was evaluated, while the structure and morphology of the synthesized CHS was analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), Raman spectroscopy and X-ray diffraction (XRD) spectroscopy. Furthermore, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy mapping (EDS-mapping) and UV-vis were employed to evaluate the MBI release from carbon capsules at different pH values. Corrosion protection performance of the doped CHS was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results showed tunability of the shell structure between an amorphous carbon and graphene structure using surface modification of the silica templates. Moreover, the MBI release from the CHSs showed to be pH-dependent allowing smart protection of mild steel when exposed to corrosive conditions.
This article has been devoted to investigation of the tribological properties of ultra‐high molecular polyethylene/graphene oxide nanocomposite. The nanocomposite of ultra‐high molecular polyethylene/graphene oxide was prepared with 0.5, 1.5, and 2.5 wt% of graphene oxide and with a molecular weight of 3.7 × 106 by in‐situ polymerization using Ziegler–Natta catalyst. In this method, graphene oxide was used along with magnesium ethoxide as a novel bi‐support of the Ziegler–Natta catalyst. Analyzing the pin‐on‐disk test, the tribological properties of the nanocomposite, such as wear rate and mean friction coefficient, were investigated under the mentioned contents of graphene oxide. The results showed that an increase in graphene oxide content causes a reduction in both wear rate and mean coefficient friction. For instance, by adding only 5 wt% graphene oxide to the polymeric matrix, the wear rate and mean coefficient friction decreased about 34% and 3.8%, respectively. Also, the morphological properties of the nanocomposite were investigated by using X‐ray diffraction and scanning electron microscopy. In addition, thermal properties of the nanocomposite were analyzed using differential scanning calorimetry, under various contents of graphene oxide. The results of the morphological test indicated that the graphene oxide was completely exfoliated into the polymeric matrix without any agglomeration. Copyright © 2016 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.