While most bacterial and archaeal taxa living in surface soils remain undescribed, this problem is exacerbated in deeper soils, owing to the unique oligotrophic conditions found in the subsurface. Additionally, previous studies of soil microbiomes have focused almost exclusively on surface soils, even though the microbes living in deeper soils also play critical roles in a wide range of biogeochemical processes. We examined soils collected from 20 distinct profiles across the United States to characterize the bacterial and archaeal communities that live in subsurface soils and to determine whether there are consistent changes in soil microbial communities with depth across a wide range of soil and environmental conditions. We found that bacterial and archaeal diversity generally decreased with depth, as did the degree of similarity of microbial communities to those found in surface horizons. We observed five phyla that consistently increased in relative abundance with depth across our soil profiles: Chloroflexi, Nitrospirae, Euryarchaeota, and candidate phyla GAL15 and Dormibacteraeota (formerly AD3). Leveraging the unusually high abundance of Dormibacteraeota at depth, we assembled genomes representative of this candidate phylum and identified traits that are likely to be beneficial in low-nutrient environments, including the synthesis and storage of carbohydrates, the potential to use carbon monoxide (CO) as a supplemental energy source, and the ability to form spores. Together these attributes likely allow members of the candidate phylum Dormibacteraeota to flourish in deeper soils and provide insight into the survival and growth strategies employed by the microbes that thrive in oligotrophic soil environments. IMPORTANCE Soil profiles are rarely homogeneous. Resource availability and microbial abundances typically decrease with soil depth, but microbes found in deeper horizons are still important components of terrestrial ecosystems. By studying 20 soil profiles across the United States, we documented consistent changes in soil bacterial and archaeal communities with depth. Deeper soils harbored communities distinct from those of the more commonly studied surface horizons. Most notably, we found that the candidate phylum Dormibacteraeota (formerly AD3) was often dominant in subsurface soils, and we used genomes from uncultivated members of this group to identify why these taxa are able to thrive in such resource-limited environments. Simply digging deeper into soil can reveal a surprising number of novel microbes with unique adaptations to oligotrophic subsurface conditions.
Forest biomass, rates of production, and carbon dynamics are a function of climate, plant species present, and the structure of the soil organic and mineral layers. Inventory data from the U.S. Forest Service (USFS) Inventory Analysis Unit was used to develop estimates of the land area represented by the major overstory species at various age-classes. The CENTURY model was then used to develop an estimate of carbon dynamics throughout the age sequence of forest development for the major ecosystem types. The estimated boreal forest area in Alaska, based on USFS inventory data is 17 244 098 ha. The total aboveground biomass within the Alaska boreal forest was estimated to be 815 330 000 Mg. The CENTURY model estimated maximum net ecosystem production (NEP) at 137, 88, 152, 99, and 65 g·m2·year1 for quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), balsam poplar (Populus balsamifera L.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) BSP) forest stands, respectively. These values were predicted at stand ages of 80, 60, 41, 68, and 100 years, respectively. The minimum values of NEP for aspen, paper birch, balsam poplar, white spruce, and black spruce were 171, 166, 240, 300, and 61 g·m2·year1 at the ages of 1, 1, 1, 1, and 12, respectively. NEP became positive at the ages of 14, 19, 16, 13, and 34 for aspen, birch, balsam poplar, white spruce, and black spruce ecosystems, respectively. A 5°C increase in mean annual temperature resulted in a higher amount of predicted production and decomposition in all ecosystems, resulting in an increase of NEP. We estimate that the current vegetation absorbs approximately 9.65 Tg of carbon per year within the boreal forest of the state. If there is a 5°C increase in the mean annual temperature with no change in precipitation we estimated that NEP for the boreal forest in Alaska would increase to 16.95 Tg of carbon per year.
Because a large fraction of the world's carbon exists in the soil of boreal forests, understanding how soil temperature and moisture affect soil respiration is vital for predicting soil response to climate change. We measured soil respiration and CO2 concentrations within soils of floodplain and upland forests in interior Alaska from 1996 to 1997. At each site, a 0.10-ha-area shelter was constructed that prevents summer precipitation from infiltrating into the soil. Measurements of soil profile CO2, soil respiration, soil temperature, and soil moisture were made inside (treatment) and outside (control) the sheltered areas through two growing seasons and the winter of 1996-1997. Sheltered soils had decreased profile concentrations and surface flux of CO2. At the upland control site, individual flux rates ranged from 0.10 to 0.95 g·m-2·h-1 in the summer and at sites under the shelter from 0.10 to 0.53 g·m-2·h-1. Rates at the floodplain control site ranged from 0.11 to 1.45 g·m-2·h-1 and under the shelter from 0.11 to 0.55 g·m-2·h-1. Fick's Law could predict surface CO2 flux when the CO2 concentration gradient within the profile accurately represented the soil surface gradient and biological sources and sinks of the gas did not overwhelm flux calculations.
Recent studies deomonstrated that cyclophosphamide given in doses that frequently induce leukopenia slows the progression of rheumatoid arthritis. Since the hazards of cyclophosphamide therapy would be less if smaller doses were effective, a double‐blind study using 0.87 to 1 mg/kg/day for 1 year was carried out. No benefit from cyclophosphamide therapy was observed.
Abstract. Carbonate weathering is essential in regulating atmospheric CO2 and carbon cycle at the century timescale. Plant roots accelerate weathering by elevating soil CO2 via respiration. It however remains poorly understood how and how much rooting characteristics (e.g., depth and density distribution) modify flow paths and weathering. We address this knowledge gap using field data from and reactive transport numerical experiments at the Konza Prairie Biological Station (Konza), Kansas (USA), a site where woody encroachment into grasslands is surmised to deepen roots. Results indicate that deepening roots can enhance weathering in two ways. First, deepening roots can control thermodynamic limits of carbonate dissolution by regulating how much CO2 transports vertical downward to the deeper carbonate-rich zone. The base-case data and model from Konza reveal that concentrations of Ca and dissolved inorganic carbon (DIC) are regulated by soil pCO2 driven by the seasonal soil respiration. This relationship can be encapsulated in equations derived in this work describing the dependence of Ca and DIC on temperature and soil CO2. The relationship can explain spring water Ca and DIC concentrations from multiple carbonate-dominated catchments. Second, numerical experiments show that roots control weathering rates by regulating recharge (or vertical water fluxes) into the deeper carbonate zone and export reaction products at dissolution equilibrium. The numerical experiments explored the potential effects of partitioning 40 % of infiltrated water to depth in woodlands compared to 5 % in grasslands. Soil CO2 data suggest relatively similar soil CO2 distribution over depth, which in woodlands and grasslands leads only to 1 % to ∼ 12 % difference in weathering rates if flow partitioning was kept the same between the two land covers. In contrast, deepening roots can enhance weathering by ∼ 17 % to 200 % as infiltration rates increased from 3.7 × 10−2 to 3.7 m/a. Weathering rates in these cases however are more than an order of magnitude higher than a case without roots at all, underscoring the essential role of roots in general. Numerical experiments also indicate that weathering fronts in woodlands propagated > 2 times deeper compared to grasslands after 300 years at an infiltration rate of 0.37 m/a. These differences in weathering fronts are ultimately caused by the differences in the contact times of CO2-charged water with carbonate in the deep subsurface. Within the limitation of modeling exercises, these data and numerical experiments prompt the hypothesis that (1) deepening roots in woodlands can enhance carbonate weathering by promoting recharge and CO2–carbonate contact in the deep subsurface and (2) the hydrological impacts of rooting characteristics can be more influential than those of soil CO2 distribution in modulating weathering rates. We call for colocated characterizations of roots, subsurface structure, and soil CO2 levels, as well as their linkage to water and water chemistry. These measurements will be essential to illuminate feedback mechanisms of land cover changes, chemical weathering, global carbon cycle, and climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.