A key issue in the practical applicability of the support vector machine methodology is the identification of the support vectors in very large data sets, a problem to which a great deal of attention has been given in the literature. In the present article we propose methods based on sampling and nearest neighbors, that allow for an efficient implementation of an approximate solution to the classification problem and, at least in some problems, will help in identifying a significant fraction of the support vectors in large data sets at low cost. The performance of the proposed method is evaluated in different examples and some of its theoretical properties are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.