T2K (Tokai to Kamioka) is a long baseline neutrino experiment with the primary goal of measuring the neutrino mixing angle θ 13 . It uses a muon neutrino beam, produced at the J-PARC accelerator facility in Tokai, sent through a near detector complex on its way to the far detector, Super-Kamiokande. Appearance of electron neutrinos at the far detector due to oscillation is used to measure the value of θ 13 .
Future high-precision neutrino interaction experiments are needed to extend the current program of GeV-scale neutrino interactions and should include:1. A feasibility study of a high-statistics hydrogen or deuterium scattering experiment to supplement the currently poorly known (anti)neutrino-nucleon cross sections.2. The need for (anti)neutrino Ar scattering data in the energy range relevant for the DUNE experiment.3. The possibility of muon-based neutrino beams providing extremely accurate knowledge of the neutrino flux and an intense electron neutrino beam.• Current and future long-and short-baseline neutrino oscillation programs should evaluate and articulate what additional neutrino-nucleus interaction data is required to meet their ambitious goals and support experiments that provide this data.In addition to these general challenges facing the community, there are more specific concerns for particular topics and interaction channels. These are summarized below in the form of observations, problem description or recommendations. For a deeper insight, the reader is encouraged to consult the subsequent sections of this paper.
We report a study of ν(μ) charged-current quasielastic events in the segmented scintillator inner tracker of the MINERvA experiment running in the NuMI neutrino beam at Fermilab. The events were selected by requiring a μ- and low calorimetric recoil energy separated from the interaction vertex. We measure the flux-averaged differential cross section, dσ/dQ², and study the low energy particle content of the final state. Deviations are found between the measured dσ/dQ² and the expectations of a model of independent nucleons in a relativistic Fermi gas. We also observe an excess of energy near the vertex consistent with multiple protons in the final state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.