Few issues in swine production are as complex as floor space allowances. One method for pork producers to calculate floor space allowance (A) is to convert BW into a 2-dimensional concept yielding an expression of A = k * BW(0.667). Data on ADG, ADFI, and G:F were obtained from published peer-reviewed studies. Five data sets were created: A = grower-finisher pigs, fully slatted floors, and consistent group size; B = grower-finisher pigs and fully slatted floors (group size did not need to be consistent); C = grower-finisher pigs, partially slatted floors, and consistent group size; D = grower-finisher pigs, partially slatted floors (group size did not need to be consistent); and E = nursery pigs, fully slatted or woven wire floors (group size did not need to be consistent). Each data set was analyzed using a broken-line analysis and a linear regression. For the broken-line analyses, the critical k value, below which a decrease in ADG occurred, varied from 0.0317 to 0.0348. In all cases the effect of space allowance on ADG was significant (P < 0.05). Using the linear analyses based on data with k values of < 0.030, the critical k values for the 4 grower-finisher data sets did not differ from those obtained using the broken-line analysis (0.0358 vs. 0.0336, respectively; P > 0.10); however, none of the linear regressions explained a significant proportion of the variation in ADG. The slopes for the nonplateau portion of the broken-line analyses based on percent values varied among data sets. For every 0.001 decrease in k (approximately 3% of the critical k value), ADG decreased by 0.56 to 1.41%, with an average value of 0.98% for the 5%-based analyses. The use of an allometric approach to express space allowance and broken-line analysis to establish space requirements seem to be useful tools for pig production. The critical k value at which crowding becomes detrimental to the growth of the pig is similar in full- and partial-slat systems and in nursery and grower-finisher stages. The critical point for crowding determined in these analyses approximated current recommendations to ensure the welfare of pigs.
Salmon oil (16·5 kg /t), a source of long-chain polyunsaturated n-3 fatty acids, was included in diets offered to multiparous sows during pregnancy and lactation to measure responses in pre-weaning mortality and performance of piglets in two studies. The first study, carried out under commercial conditions, included 196 sows which were offered salmon oil and control diets from immediately post service until weaning. The same diets were also offered to 10 sows per treatment from day 58 of pregnancy in a controlled nutritional study which measured the effects of salmon oil on piglet tissue fatty acid composition. Offering salmon oil to the sow significantly increased gestation length and decreased individual piglet birth weight but had no effect on litter size at birth. Overall, salmon oil reduced pre-weaning mortality from 11·7% to 10·2% mainly by reducing the incidence of deaths from crushing by the sow. More detailed analysis of mortality using a general linear mixed model and 2294 piglet records, demonstrated that the incidence of pre-weaning mortality was significantly decreased with increasing individual piglet birth weight and by inclusion of salmon oil in the diet; the incidence of mortality increased with average piglet birth weight in a litter. Salmon oil inclusion had no effect on weight of litter weaned, sow lactation food intake or subsequent reproductive performance. In both studies, dietary salmon oil increased the proportions of long-chain n-3 polyunsaturated fatty acids in colostrum to a similar extent. In the nutritional study, inclusion of salmon oil reduced the proportions of 20: 4 n-6 in piglet liver and brain at birth and increased the proportions of long-chain n-3 polyunsaturated fatty acids. Therefore, despite reducing piglet birth weight, offering sows salmon oil reduced pre-weaning mortality of piglets. The nutritional study showed that the amount and type of marine oil used may not have been optimal.
The effects of different dietary essential fatty acids on piglet tissue composition at birth and performance until 7 days post weaning were investigated by offering the sow diets containing (17·5 g oil per kg diet) either maize oil (MO) as a control treatment, tuna oil (TO) as a source of long chain n-3 polyunsaturated fatty acids, particularly 22:6 n-3, or a mixture of maize and linseed oils (LO) which supplied the same amount of n-3 acids as TO but in the form of 18:3 n-3. Ten sows were allocated to each treatment which was offered throughout pregnancy and lactation. Compared with MO, offering TO increased sow plasma and subcutaneous adipose tissue 22: 6 n-3 proportions whereas LO increased 18: 3 n-3 and, to a much lesser extent than TO, 22: 6 n-3. Offering TO to the sow increased the proportions of 20: 5 n-3 and 22: 6 n-3 in piglet brain and liver at birth and decreased the n-6 acids, 20: 4, 22: 4 and 22: 5. LO only increased piglet liver 20: 5 n-3 proportions but to a lesser extent than TO; however, LO also decreased the proportions of 20: 4, 22: 4 and 22: 5 n-6 in piglet tissues. Offering the pregnant sow dietary 18: 3 n-3 therefore increased deposition of 22: 6 n-3 in foetal piglet tissues to a much lesser extent than tuna oil and so it is necessary to offer the sow pre-formed 22: 6 n-3 in order to achieve maximum foetal 22: 6 n-3 deposition. By experimentally allocating piglets at birth, effects of sow nutrition during pregnancy and lactation were separated. Piglets sucking MO or TO sows were heavier than piglets sucking LO sows 7 days post weaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.