Rock wool (RW) nanostructures of various sizes and morphologies were prepared using a combination of ball-mill and hydrothermal techniques, followed by an annealing process. Different tools were used to explore the morphologies, structures, chemical compositions and optical characteristics of the samples. The effect of initial particle size on the characteristics and photoelectrochemical performance of RW samples generated hydrothermally was investigated. As the starting particle size of ball-milled natural RW rises, the crystallite size of hydrothermally formed samples drops from 70.1 to 31.7 nm. Starting with larger ball-milled particle sizes, the nanoparticles consolidate and seamlessly combine to form a continuous surface with scattered spherical nanopores. Water splitting was used to generate photoelectrochemical hydrogen using the samples as photocatalysts. The number of hydrogen moles and conversion efficiencies were determined using amperometry and voltammetry experiments. When the monochromatic wavelength of light was increased from 307 to 460 nm for the manufactured RW>0.3 photocatalyst, the photocurrent density values decreased from 0.25 to 0.20 mA/mg. At 307 nm and +1 V, the value of the incoming photon-to-current efficiency was ~9.77%. Due to the stimulation of the H+ ion rate under the temperature impact, the Jph value increased by a factor of 5 when the temperature rose from 40 to 75 °C. As a result of this research, for the first time, a low-cost photoelectrochemical catalytic material is highlighted for effective hydrogen production from water splitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.