Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE(e): above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE(e) in drier years that increased significantly with drought to a maximum WUE(e) across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought--that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE(e) may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands.
On December 2, 1999, 120 pregnant cows were weighed, their body condition scored, and then sorted into six groups of 20 stratified by BCS, BW, breed, and age. Groups were assigned randomly to six, 5.1-ha dormant common bermudagrass (Cynodon dactylon [L.] Pers.) pastures for 2 yr to determine the effects of supplemental Se and its source on performance and blood measurements. During the winter, each group of cows had ad libitum access to bermudagrass/dallisgrass (Paspalum dilatatum Poir.) hay plus they were allowed limited access (1 to 4 d/wk) to a 2.4-ha winter-annual paddock planted in half the pasture. Treatments were assigned randomly to pastures (two pastures per treatment), and cows had ad libitum access to one of three free-choice minerals: 1) no supplemental Se, 2) 26 mg of supplemental Se from sodium selenite/kg, and 3) 26 mg of supplemental Se from seleno-yeast/kg (designed intake = 113 g/cow daily). Data were analyzed using a mixed model; year was the random effect and treatment was the fixed effect. Selenium supplementation or its source had no effect (P > or = 0.19) on cow BW, BCS, conception rate, postpartum interval, or hay DMI. Birth date, birth weight, BW, total BW gain, mortality, and ADG of calves were not affected (P > 0.20) by Se or its source. Whole blood Se concentrations and glutathione peroxidase (GSH-Px) activity at the beginning of the trial did not differ (P > or = 0.17) between cows receiving no Se and cows supplemented with Se or between Se sources. At the beginning of the calving and breeding seasons, cows supplemented with Se had greater (P < 0.01) whole blood Se concentrations and GSH-Px activities than cows receiving no supplemental Se; cows fed selenoyeast had greater (P < or = 0.05) whole blood Se concentrations than cows fed sodium selenite, but GSH-Px did not differ (P > or = 0.60) between the two sources. At birth and on May 24 (near peak lactation), calves from cows supplemented with Se had greater (P < or = 0.06) whole blood Se concentrations than calves from cows fed no Se. At birth, calves from cows fed seleno-yeast had greater (P < or = 0.05) whole blood Se concentrations and GSH-Px activities than calves from cows fed sodium selenite. Although no differences were noted in cow and calf performance, significant increases were noted in whole blood Se concentrations and GSH-Px activities in calves at birth as a result of feeding of seleno-yeast compared to no Se or sodium selenite.
Stress commonly associated with weaning, marketing, and shipment of feeder cattle can temporarily compromise immune function, thereby reducing the effective response to vaccination intended to control bovine respiratory disease (BRD). Two vaccination timing treatments were used to evaluate the effect of timing of a multivalent modified live virus (MLV) BRD vaccine on health, performance, and infectious bovine rhinotracheitis (IBR) antibody titers of newly received stocker cattle. Crossbred bull and steer calves (n = 528) were weighed (197 ± 2.4 kg) and randomly assigned to MLV vaccination treatment: 1) MLV vaccination upon arrival (AMLV), or 2) delayed (14 d) MLV vaccination (DMLV). All cattle were processed similarly according to routine procedures, with the exception of the initial MLV vaccination timing. Subsequently, BW were recorded on d 14, 28, and 42. Blood samples were collected on d 0, 14, 28, and 42 to determine serum IBR
[1] Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary production (ANPP) by combining a greenness index from satellite measurements and climatic records during 2000-2009 from 11 long-term experimental sites in multiple biomes and climates. Results showed that extreme precipitation patterns decreased the sensitivity of ANPP to total annual precipitation (P T ) at the regional and decadal scales, leading to decreased rain use efficiency (RUE; by 20% on average) across biomes. Relative decreases in ANPP were greatest for arid grassland (16%) and Mediterranean forest (20%) and less for mesic grassland and temperate forest (3%). The cooccurrence of heavy rainfall events and longer dry intervals caused greater water stress conditions that resulted in reduced vegetation production. A new generalized model was developed using a function of both P T and an index of precipitation extremes and improved predictions of the sensitivity of ANPP to changes in precipitation patterns. Our results suggest that extreme precipitation patterns have substantially negative effects on vegetation production across biomes and are as important as P T . With predictions of more extreme weather events, forecasts of ecosystem production should consider these nonlinear responses to altered extreme precipitation patterns associated with climate change.
Grasslands across the United States play a key role in regional livelihood and national food security. Yet, it is still unclear how this important resource will respond to the prolonged warm droughts and more intense rainfall events predicted with climate change. The early 21st-century drought in the southwestern United States resulted in hydroclimatic conditions that are similar to those expected with future climate change. We investigated the impact of the early 21st-century drought on aboveground net primary production (ANPP) of six desert and plains grasslands dominated by C4 (warm season) grasses in terms of significant deviations between observed and expected ANPP. In desert grasslands, drought-induced grass mortality led to shifts in the functional response to annual total precipitation (P(T)), and in some cases, new species assemblages occurred that included invasive species. In contrast, the ANPP in plains grasslands exhibited a strong linear function of the current-year P(T) and the previous-year ANPP, despite prolonged warm drought. We used these results to disentangle the impacts of interannual total precipitation, intra-annual precipitation patterns, and grassland abundance on ANPP, and thus generalize the functional response of C4 grasslands to predicted climate change. This will allow managers to plan for predictable shifts in resources associated with climate change related to fire risk, loss of forage, and ecosystem services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.