Self-fluxing nickel or cobalt-based alloys that use boron, phosphorus or silicon, as melting point depressants and fluxing agents are thermodynamic simulation of self-fluxing materials Ni-0.5C-15Cr-3.2Si-2B (PGSR-2) and Ni-1C-17Cr-4.1Si-3.6B (PGSR-4) was performed. As the software for simulation of phase and chemical equilibrium the TERRA software package was used. The simulation was carried out in the temperature range 300–3000 K at a total pressure P = 105 Pa in an argon atmosphere. The temperature dependences of the equilibrium composition and thermodynamic characteristics (enthalpy, entropy, and Gibbs energy) of the alloys of the investigated systems were calculated. It is shown that Ni, Cr, C, Ni3B, Ni2B, NiB, Ni2Si, NiSi, CrB, CrSi can be formed in the condensed phase under equilibrium heating of PGSR-2. When PGSR-4 is heated in the condensed phase, along with the above components, Cr5B3, CrB2 and Cr3C2 compounds can be formed. The temperature dependences of the thermodynamic characteristics of the systems studied have kinks that can be explained by phase transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.