BackgroundLosses of slaughter-weight pigs due to transport stress are both welfare and economic concerns to pork producers. Historically, the HAL-1843 mutation in ryanodine receptor 1 was considered responsible for most of the losses; however, DNA testing has effectively eliminated this mutation from commercial herds. We identified two sibling barrows in the USMARC swine herd that died from apparent symptoms of a stress syndrome after transport at 12 weeks of age. The symptoms included open-mouth breathing, skin discoloration, vocalization and loss of mobility.ResultsWe repeated the original mating along with sire-daughter matings to produce additional offspring. At 8 weeks of age, heart rate and electrocardiographs (ECG) were monitored during isoflurane anesthesia challenge (3% for 3 min). Four males from the original sire-dam mating and two males from a sire-daughter mating died after one minute of anesthesia. Animals from additional litters were identified as having a stress response, sometimes resulting in death, during regular processing and weighing. Affected animals had elevated plasma creatine phosphokinase (CPK) levels before and immediately after isoflurane challenge and cardiac arrhythmias. A pedigree containing 250 pigs, including 49 affected animals, was genotyped with the Illumina PorcineSNP60 Beadchip and only one chromosomal region, SSCX at 25.1-27.7 Mb over the dystrophin gene (DMD), was significantly associated with the syndrome. An arginine to tryptophan (R1958W) polymorphism in exon 41 of DMD was the most significant marker associated with stress susceptibility. Immunoblots of affected heart and skeletal muscle showed a dramatic reduction of dystrophin protein and histopathology of affected hearts indicated muscle fiber degeneration.ConclusionsA novel stress syndrome was characterized in pigs and the causative genetic factor most likely resides within DMD that results in less dystrophin protein and cardiac abnormalities that can lead to death under stressful conditions. The identification of predictive markers will allow us to determine the prevalence of this disease in commercial swine populations. This defect also provides a unique biomedical model for human cardiomyopathy associated with muscular dystrophy that may be superior to those available because of the similarities in anatomy and physiology and allow advances in gene therapies for human disease.
Bovine respiratory disease (BRD) is the most economically important disease in U.S. feedlots. Infection can result in morbidity, mortality, and reduced average daily gain. Cheap and reliable genetic methods of prediction and protection from BRD would be highly advantageous to the industry. The immune response may correlate with BRD incidence. Cattle (n = 2,182) were vaccinated against common viral and bacterial pathogens of BRD. Two blood samples were collected, one during booster vaccination and one 21d later, enabling 3 phenotypes for each trait [prebooster (pre), postbooster (post), and delta (post minus pre)]. From the blood samples innate and adaptive responses [counts of white blood cells (WBC), neutrophils, lymphocytes, monocytes, eosinophils, and basophils] were measured. In addition, feedlot ADG and binary traits [health records (HR; 0 = healthy, 1 = ill) and lung scores (LS; collected at harvest; 0 = no lesions, 1 = lesions)] were also recorded. Traits ADG, HR, and LS have all been significantly correlated with infection to BRD. In this investigation we aimed to find correlations between the immune response and ADG, HR, and LS to find an easily measurable trait that would be a good predictor of BRD resistance after vaccination. The results showed an average positive delta for the innate immune response (eosinophils, basophils, neutrophils), whereas the adaptive immune response had an average negative delta (lymphocytes). Overall, we discovered that the immune responses had moderately high heritabilities (h(2); lowest: delta monocytes, 0.21 ± 0.05; greatest: pre lymphocytes: 0.5 ± 0.05), with lymphocytes having the greatest h(2) throughout the study (h(2) ≥ 0.41). All genetic correlations were calculated using bivariate REML models. Although LS did not significantly correlate with any of the immune phenotypes, both ADG (post lymphocytes, -0.24 ± 0.12) and HR (pre eosinophils, -0.67 ± 0.29; delta WBC, -0.5 ± 0.24, and delta lymphocytes, -0.67 ± 0.21) did. All the significant genetic correlations with HR were negative; resistance to BRD appears to be a function of greater delta lymphocytes and WBC. The increase in eosinophils may potentially link its role in decreasing lymphocytes. These results may enable producers to predict if revaccination, quarantine, and breeding of animals is required to reduce the incidence of BRD postvaccination. In addition, immunological phenotypes maybe used to aid genomic selection indices to select animals with greater rates of protection after BRD vaccination.
Bovine respiratory disease complex (BRDC) is the most expensive disease in beef cattle in the United States costing the industry at least US$1 billion annually. Bovine respiratory disease complex causes damage to lung tissue resulting in persistent lung lesions observable at slaughter. Severe lung lesions at harvest have been associated with decreased preharvest ADG and increased clinical BRDC in the feedlot. Our objective was to identify SNP that are associated with severe lung lesions observed at harvest in feedlot cattle. We conducted a genomewide association study (GWAS) using a case-control design for severe lung lesions in fed cattle at slaughter using the Illumina Bovine HD array (approximately 770,000 SNP) and sample pooling. Lung samples were collected from 11,520 young cattle, a portion of which had not been treated with antibiotics (participating in a "natural" marketing program), at a large, commercial beef processing plant in central Nebraska. Lung samples with lesions (cases) and healthy lungs (controls) were collected when both phenotypes were in close proximity on the viscera (offal) table. We constructed 60 case and 60 control pools with 96 animals per pool. Pools were constructed by sampling sequence to ensure that case and control pool pairs were matched by proximity on the processing line. The Bovine HD array (770,000 SNP) was run on all pools. Fourteen SNP on BTA 2, 3, 4, 9, 11, 14, 15, 22, 24, and 25 were significant at the genomewide experiment-wise error rate of 5% ( ≤ 1.49 × 10). Eighty-five SNP on 28 chromosomes achieved a false discovery rate of 5% ( ≤ 5.38 × 10). Significant SNP were near (±100 kb) genes involved in tissue repair and regeneration, tumor suppression, cell proliferation, apoptosis, control of organ size, and immunity. Based on 85 significantly associated SNP in or near a collection of genes with diverse function on 28 chromosomes, we conclude that the genomic footprint of lung lesions is complex. A complex genomic footprint (genes and regulatory elements that affect the trait) is consistent with what is known about the cause of the disease: complex interactions among multiple viral and bacterial pathogens along with several environmental factors including dust, commingling, transportation, and stress. Characterization of sequence variation near significant SNP will enable accurate and cost effective genome-enhanced genetic evaluations for BRDC resistance in AI bulls and seed stock populations.
The clock gene Period 1 (Per1) may be a prolificacy gene, because it localized to the mouse oocyte and Per1-null drosophila shed fewer eggs. Because Per1 mapped to a region of mouse chromosome 11 syntenic to bovine chromosome 19 where a quantitative trait loci (QTL) for ovulation rate existed, we hypothesized that Per1 influenced folliculogenesis and ovulation rate in ruminants. Ovarian cortex was collected at slaughter on days 5, 12, 15, 17, and 20 after estrus for real-time RT-PCR evaluation of Per1 mRNA expression in Dorset (n = 18), Romanov (n = 10), Romanov/Dorset (n = 21), and Composite (n = 22) ewes. Ovarian cortex was also collected from cows selected for increased ovulation rate (n = 37) or unselected controls (n = 28) on days 4, 5, and 6 of the estrous cycle for in situ hybridization and real-time RT-PCR. To examine the role of Per1 in early follicular development, ovarian cortex from neonatal calves (n = 5) was cultured for 10 days and Per1 mRNA levels were measured on day 0 and on day 10 of culture. The primers generated a 483 bp amplicon with 100% sequence homology to bovine RIGUI-like protein (Per1). In silico mapping of this sequence placed Per1 on bovine chromosome 19; however, it was 20 cM from the QTL. Per1 mRNA expression was unaffected by prolificacy, day of the cycle, or pregnancy status in ewes or cows. The riboprobe hybridized to oocytes of bovine preantral and antral follicles. In bovine ovarian cortical cultures on day 0, the tissue contained mostly primordial follicles (5.6 ± 0.6 follicles/section); however, after 10 days in culture, the number of primordial ଝ Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of names by the USDA implies no approval of the product to the exclusion of others that may also be suitable. A. Cushman et al. / Animal Reproduction Science 99 (2007) 93-105 follicles per section decreased (0.5 follicles/section) and the number of primary follicles increased as follicles activated (day 0 = 0.5 ± 0.6 versus day 10 = 10.4 ± 0.6 primary follicles/section; P < 0.001). Per1 mRNA did not change over time in culture. We conclude that Per1 mRNA is expressed by ruminant oocytes in preantral and antral follicles; however, its physiological role in mammalian ovarian function remains to be elucidated. Published by Elsevier B.V.
The macrolide class antimicrobial tylosin (trade name Tylan) is approved by the U.S. Food and Drug Administration for continuous inclusion in feed for liver abscess prevention. To address concerns that this antimicrobial application may threaten human health, a population of feedlot steers was split into a control treatment (n = 42) and a tylosin treatment (n = 42). Feed rations were identical except for the inclusion of tylosin at 60 to 90 mg per head per day. Fecal swab (n = 335), pen surface material (n = 256), feed (n = 56), and water trough (n = 32) samples were obtained over four sample occasions: November (1 day before the start of tylosin inclusion in feed), January (80 days of tylosin in feed), April (167 days), and June (253 days). These samples were cultured for Escherichia coli, tetracycline-resistant E. coli, third-generation cephalosporin-resistant E. coli, Enterococcus, tetracycline-resistant Enterococcus, and erythromycin-resistant Enterococcus. Metagenomic DNA was isolated from each June fecal swab and pen surface material sample. Metagenomic DNA samples were pooled by pen for 14 fecal and 14 pen surface material samples. Quantitative PCR was employed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6′)-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). Nasal swab samples (n = 335) were obtained from each steer during each sample period and cultured for the presence of Staphylococcus aureus and methicillin-resistant S. aureus. Of these measurements, only January and June mean fecal swab erythromycin-resistant Enterococcus colony counts for tylosin-treated cattle were significantly higher (P ≤ 0.05) than the range of mean values for control treatments. These results suggest that in-feed tylosin through the end of finishing has a narrow and minimal antimicrobial resistance impact. HIGHLIGHTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.