The intercalated water into nanopores exhibits anomalous properties such as an ultralow dielectric constant. Multiscale modeling and simulations are used to investigate the dielectric properties of various crystalline two-dimensional ices and bulk ices. Although the structural properties of two-dimensional (2D) ices have been extensively studied, much less is known about their electronic and optical properties. First, by using density functional theory and density functional perturbation theory (DFPT), we calculate the key electronic, optical, and dielectric properties of 2D ices. Performing DFPT calculations, both the ionic and electronic contributions of the dielectric constant are computed. The in-plane electronic dielectric constant is found to be larger than the out-of-plane dielectric constant for all the studied 2D ices. The in-plane dielectric constant of the electronic response (ε el ) is found to be isotropic for all the studied ices. Second, we determined the dipolar dielectric constant of 2D ices using molecular dynamics simulations at finite temperature. The total out-of-plane dielectric constant is found to be larger than 2 for all the studied 2D ices. Within the framework of the random-phase approximation, the absorption energy ranges for 2D ices are found to be in the ultraviolet spectra. For comparison purposes, we also elucidate the electronic, dielectric, and optical properties of four crystalline ices (ice VIII, ice XI, ice Ic, and ice Ih) and bulk water.
In this work, we have analyzed two synthesis procedures through experimental characterizations, where one provides a main temperature region for the control of the shape and size of ZnO nano-particles in comparison to the other. We have found that the complexing agent has a significant role in showing such a control region. This effect might also improve the fabrication and properties of other interesting and applicable nano-structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.