A confocal microscope was used to investigate the reversible vacuolation of frog skeletal muscle fibres produced by the efflux and entry of glycerol (80-100 mM). The formation, development and disappearance of vacuoles was observed in the fibres by staining simultaneously with two fluorescent membrane probes, RH414 and DiOC6(3). The styryl dye, RH414, stains only the plasmalemma and the membranes of the transverse tubules. In normal and glycerol-loaded fibres, RH414 revealed regular, narrow dotted bands located at the position of the Z-lines. Glycerol removal produced, within 2-10 min, many empty round vacuoles (0.4-1.5 microns in diameter) that were apparently anchored to the stained bands. Later on, individual vacuoles tended to enlarge and align into longitudinal chains of vacuoles. Neighbouring vacuoles that contacted each other fused to form large vacuoles up to several sarcomeres in length. Neither the T-tubules, nor the vacuoles, were stained by DiOC6(3). However, glycerol efflux was also accompanied by a redistribution of sarcoplasmic reticulum membranes and by changes in mitochondria that were revealed on staining the same fibres with the carbocyanine dye, DiOC6(3). The alterations in staining patterns revealed by RH414 and DiOC6(3) were completely reversible. Within 5-10 min after a second application of glycerol, the pattern of staining returned to normal with the exception of very bright, spots stained with RH414, which appeared in place of many but not all of the vacuoles, and probably correspond to the irregular nets of T-tubules observed under the electron microscope in such fibres. They are considered to be defects in regeneration of the T-system after vacuolation. The vacuolation/devacuolation cycle could be repeated several times following glycerol efflux and entry. The development and disappearance of vacuoles then mainly involved conversion of bright spots to large vacuoles and vice versa. Some possible mechanisms of vacuole formation and disappearance are discussed, and it is suggested that vacuolation of the T-system may be important in relation to regulating the volume of skeletal muscle cells.
The spatial distribution of acid membrane organelles and their relationships with normal and vacuolated transverse tubules has been studied in living frog skeletal muscle fibres using confocal microscopy. Acridine orange (AO) was used to evaluate acid compartments, while a lipophilic styryl dye, RH 414, was employed to stain the membranes of the T-system. AO accumulated in numerous spherical granules located near the poles of nuclei and between myofibrils where they were arranged in short parallel rows, triplets or pairs. AO granules could be divided into three groups: green (monomeric AO), red (aggregated AO), and mixed green/red. As demonstrated by lambda-scanning, most granules were mixed. Double staining of muscle fibres with AO and RH 414 revealed almost all AO granules located near the transverse tubules. Vacuolation of the T-system was induced by glycerol loading and subsequent removal. The close juxtaposition of AO granules and the T-system was preserved in vacuolated fibres. The lumens of vacuoles did not accumulate AO. It is concluded that AO granules represent an accumulation of AO in lysosome-related organelles and fragmented Golgi apparatus and a possible functional role of the spatial distribution of such acidic compartments is discussed.
This review outlines the basic properties of T-tubules in skeletal muscle cells, and the factors that govern reversible vacuolation in T-tubules under experimental conditions. Comparable membranous transformations, involving the plasma membrane or occurring intracellularly, in non-muscle cells are then considered. Finally, the mechanisms of similar transformations in various model membrane systems are discussed. In view of the similarities between reversible vacuolation in the T-system and membrane transformations occurring in a variety of non-muscle cells, it is suggested that reversible vacuolation in T-tubules may be regarded as a general model for tubular-vesicular transformations in biomembranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.