Sustainable use of groundwater is becoming critical in India and requires effective participation from local communities along with technical, social, economic, policy and political inputs. Access to groundwater for farming communities is also an emotional and complex issue as their livelihood and survival depends on it. In this article, we report on transdisciplinary approaches to understanding the issues, challenges and options for improving sustainability of groundwater use in States of Gujarat and Rajasthan, India. In this project, called Managed Aquifer Recharge through Village level Intervention (MARVI), the research is focused on developing a suitable participatory approach and methodology with associated tools that will assist in improving supply and demand management of groundwater. The study was conducted in the Meghraj watershed in Aravalli district, Gujarat, and the Dharta watershed in Udaipur district, Rajasthan, India. The study involved the collection of hydrologic, agronomic and socio-economic data and engagement of local village and school communities through their role in groundwater monitoring, field trials, photovoice activities and education campaigns. The study revealed that availability of relevant and reliable data related to the various aspects of groundwater and developing trust and support between local communities, NGOs and government agencies are the key to moving towards a dialogue to decide on what to do to achieve sustainable use of groundwater. The analysis of long-term water table data indicated considerable fluctuation in groundwater levels from year to year or a net lowering of the water table, but the levels tend to recover during wet years. This provides hope that by improving management of recharge structures and groundwater pumping, we can assist in stabilizing the local water table. Our interventions through Bhujal Jankaars (BJs), (a Hindi word meaning "groundwater informed" volunteers), schools, photovoice workshops and newsletters have resulted in dialogue within the communities about the seriousness of the groundwater issue and ways to explore options for situation improvement. The BJs are now trained to understand how local recharge and discharge patterns are influenced by local rainfall patterns and pumping patterns and they are now becoming local champions of groundwater and an important link between farmers and project team. This study has further strengthened the belief that traditional research approaches to improve the groundwater situation are unlikely to be suitable for complex groundwater issues in the study areas. The experience from the study indicates that a transdisciplinary approach is likely to be more effective in enabling farmers, other village community members and NGOs to work together with researchers and government agencies to understand the groundwater situation and design interventions that are holistic and have wider ownership. Also, such an approach is expected to deliver longer-term sustainability of groundwater at a regional level.
The accumulation of heavy metals in soil and water is a serious concern due to their persistence and toxicity. This study investigated the vertical distribution of heavy metals, possible sources and their relation with soil texture in a soil profile from seasonally waterlogged agriculture fields of Eastern Ganges basin. Fifteen samples were collected at ~0.90-m interval during drilling of 13.11 mbgl and analysed for physical parameters (moisture content and grain size parameters: sand, silt, clay ratio) and heavy metals (Fe, Mn, Cr, Cu, Pb, Zn, Co, Ni and Cd). The average metal content was in the decreasing order of Fe > Mn > Cr > Zn > Ni > Cu > Co > Pb > Cd. Vertical distribution of Fe, Mn, Zn and Ni shows more or less similar trends, and clay zone records high concentration of heavy metals. The enrichment of heavy metals in clay zone with alkaline pH strongly implies that the heavy metal distributions in the study site are effectively regulated by soil texture and reductive dissolution of Fe and Mn oxy-hydroxides. Correlation coefficient analysis indicates that most of the metals correlate with Fe, Mn and soil texture (clay and silt). Soil quality assessment was carried out using geoaccumulation index (I(geo)), enrichment factor (EF) and contamination factor (CF). The enrichment factor values were ranged between 0.66 (Mn) and 2.34 (Co) for the studied metals, and the contamination factor values varied between 0.79 (Mn) and 2.55 (Co). Results suggest that the elements such as Cu and Co are categorized as moderate to moderately severe contamination, which are further confirmed by I(geo) values (0.69 for Cu and 0.78 for Co). The concentration of Ni exceeded the effects-range median values, and the biological adverse effect of this metal is 87%. The average concentration of heavy metals was compared with published data such as concentration of heavy metals in Ganga River sediments, Ganga Delta sediments and upper continental crust (UCC), which apparently revealed that heavy metals such as Fe, Mn, Cr, Pb, Zn and Cd are influenced by the dynamic nature of flood plain deposits. Agricultural practice and domestic sewage are also influenced on the heavy metal content in the study area.
This study aims to evaluate the potential of greywater availability in Muscat Governorate in the Sultanate of Oman, to establish a methodology for greywater quantity estimation, to test greywater quality in order to assess reuse potential, and to examine public acceptance for reuse.Total fresh water consumption and greywater generation from different household sources were measured by water meters in five selected households during summer and winter. Additionally, a survey was designed and conducted in five administrative areas of Muscat Governorate, with the objective of testing a methodology for estimating greywater generation potential in these areas. Collected data were compared with that used by the Ministry of Housing, Electricity and Water, Sultanate of Oman. The survey covered a total of 169 houses and 1,365 people. Greywater samples were collected and analyzed from showers, laundries, kitchens and sinks in some of these households to determine their water quality parameters. Statistical analysis results indicated that there is no significant variance in the total fresh water consumption between data used by the ministry and those measured and estimated during this study, highlighting the applicability of the tested method. The study concluded that the average per capita greywater generation rate is 151 Lpcd. Greywater production ranged from 80 to 83% of the total fresh water consumption and most of the greywater is generated from showers. Further, 55 to 57% of the greywater generated in a typical Omani household originated from the shower, 28 to 33% originated from the kitchen, 6 to 9% originated from laundry, and 5 to 7% originated from sink, which constitutes approximately 81% of the total fresh water consumption. The physical, chemical, and biological analyses of the grab samples revealed that greywater contains significant levels of suspended solids, inorganic constituents, total organic carbon, chemical and biochemical oxygen demands, total Coliforms and Escherichia Coliform bacteria. The public acceptance survey illustrated that approximately 76% of the respondents accepted the reuse of greywater for gardening, 53% for car washing and 66% for toilet flushing.
Abstract:Groundwater management practices need to take hydrogeology, the agro-climate and demand for groundwater into account. Since agroclimatic zones have already been demarcated by the Government of India, it would aid policy makers to understand the status of groundwater recharge and discharge in each agroclimatic zone. However, developing effective policies to manage groundwater at agroclimatic zone and state levels is constrained due to a paucity of temporal data and information. With the launch of the Gravity Recovery and Climate Experiment (GRACE) mission in 2002, it is now possible to obtain frequent data at broad spatial scales and use it to examine past trends in rain induced recharge and groundwater use. In this study, the GRACE data were used to estimate changes to monthly total water storage (TWS) and groundwater storage in different agroclimatic zones of Rajasthan, India. Furthermore, the long-term annual and seasonal groundwater storage trends in the state were estimated using the GRACE data and the trends were compared with those in rainfall data. The methodology based on GRACE data was found to be useful in detecting large scale trends in groundwater storage changes covering different agroclimatic zones. The analysis of data shows that groundwater storage trends depend on rainfall in previous years and, therefore, on the antecedent moisture conditions. Overall, the study indicates that if suitable groundwater recharge methods and sites are identified for the state, there is OPEN ACCESSWater 2015, 7 5548 potential to achieve more groundwater recharge than what is currently occurring and, thus, enhancing the availability of water for irrigated agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.