Analisa tekstur adalah satu sifat penting untuk mengenal pasti permukaan dan objek daripada imej perubatan dan pelbagai imej lain. Penyelidikan ini telah membangunkan sebuah algoritma untuk menganalisa tekstur dengan menggunakan imej perubatan dari echocardiography untuk mengenal pasti jantung yang disyaki mengalami myocardial infarction. Di sini penggabungan daripada teknik wavelet extension transform dan teknik gray level co–occurrence matrix adalah dicadangkan. Di dalam penyelidikan ini wavelet extension transform digunakan untuk menghasilkan sebuah imej hampiran yang mempunyai resolusi yang lebih besar. Gray level co–occurrence matrix yang dihitung untuk setiap sub–band digunakan untuk mencirikan empat sifat vektor: entropy, contrast, energy (angular second moment) dan homogeneity (invers difference moment). Pengklasifikasian yang digunakan di dalam penyelidikan ini adalah pengklasifikasian Mahalanobis distance. Kaedah yang telah dicadangkan diuji dengan data klinikal dari imej echocardiography untuk 17 orang pesakit. Untuk setiap pesakit, contoh tisu diambil daripada kawasan yang disyaki infarcted dan kawasan non–infarcted (normal). Untuk setiap pesakit, 8 bingkai imej yang dipisahkan oleh sela waktu tertentu di mana 5 kawasan normal dan 5 kawasan disyaki myocardial infarction berukuran 16×16 piksel akan dianalisa. Hasil pengklasifikasian telah dicapai dengan ketepatan 91.32%. Kata kunci: Analisa tekstur, wavelet extension, co–occurrence matrix, myocardial infarction, sifat vektor Texture analysis is an important characteristic for surface and object identification from medical images and many other types of images. This research has developed an algorithm for texture analysis using medical images do trained from echocardiography in identifying heart with suspected myocardial infarction problem. A set of combination of wavelet extension transform with gray level co–occurrence matrix is proposed. In this work, wavelet extension transform is used to form an image approximation with higher resolution. The gray level co–occurrence matrices computed for each subband are used to extract four feature vectors: entropy, contrast, energy (angular second moment) and homogeneity (inverse difference moment). The classifier used in this work is the Mahalanobis distance classifier. The method is tested with clinical data from echocardiography images of 17 patients. For each patient, tissue samples are taken from suspected infarcted area as well as from non–infarcted (normal) area. For each patient, 8 frames separated by some time interval are used and for each frame, 5 normal regions and 5 suspected myocardial infarction regions of 16×16 pixel size are analyzed. The classification performance achieved 91.32% accuracy. Key words: Texture analysis, wavelet extension, co–occurrence matrix, myocardial infarction, feature vector
Imej haba adalah imej yang menunjukkan ciri haba atau suhu daripada sebuah objek. Imej haba ini diperolehi dengan menggunakan kamera haba inframerah. Kamera ini bekerja menggunakan prinsip radiasi perpindahan haba dan menggunakan penderia untuk membaca radiasi tenaga sebuah objek. Imej haba dari sesuatu objek di dunia nyata adalah imej haba sebenar dari objek berkenaan. Walau bagaimanapun ada situasi tertentu yang mana imej haba tiruan diperlukan, misalnya untuk mengira pengagihan suhu atau untuk memahami perilaku haba sebuah objek. Kertas kerja ini memperlihatkan cara untuk mendapatkan imej haba tiruan ini, yang berdasarkan pada paradigma pemprosesan imej. Kata kunci: Imej haba tiruan; perpindahan haba berangka; termografi inframerah Thermal image is an image that shows the thermal or temperature properties of an object. Thermal image of an object is obtained from a thermal infrared camera. This camera works by employing radiative heat transfer principles and uses sensors to capture the radiated energy of an object. Thermal image of an object in the real world which is captured by a thermal camera is a real thermal image of that object. But sometimes there is a situation in which it is necessary to simulate a real situation in order to generate synthetic thermal image, for example in estimating the temperature distribution or in understanding the thermal behaviour of a particular object. This paper demonstrates the technique to generate the synthetic thermal images, all which is based on image processing paradigm. Key words: Synthetic thermal image; numerical heat transfer; infrared thermography
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.